本文目录一览

1,正65537边形的介绍

正65537边形是多边形的一种。共有65537条边,65537个顶点,内角和为11796300°,对角线2147450879条。不过正65537边形可以用尺规作图的方法绘出(并不完全是圆)。

正65537边形的介绍

2,正65537边形的介绍

假定边长为1厘米,65537边形的周长为65537厘米,这个数字与园周长相当接近。先假设二者相等,则圆的半径为65537/2x3.14=10435.8(cm)=104.358(m)。可见,如果有够大的场地,是可以作出边数大于正65537边形的图形。否则,仅仅是理论上可以,实际上不行。

正65537边形的介绍

3,最奇葩多边形 正65537边形 用尺规画图奔溃65537条边

正65537边形具有65537条边,65537个顶点,利用肉眼观察它,看起来几乎就是一个圆,所以它也是边数为质数的多边形中,能用尺规画出来的边数最多的多边形,一位叫做盖尔美斯的德国人,利用整整10年的时间做出了真正的正65537边形,下面就跟着本站我一起来看看吧! 最奇葩多边形:正65537边形 虽然正65537边形是多边形的一种,但是由于边数特别的多,足足有65537条,所以很多人都会将它误解为一个圆。光是它的顶点就有65537个,内角和也是无比的大,达到了11796300度,所以单是用普通的尺规可能要画到天荒地老,才能画出完整的正65537边形。 正65537边形虽然看起来十分简单,但是它的面积和边长的计算确实十分复杂的,据资料显示,一个半径为1的圆就能通过内切达到正65537边形的状态,所以它的大致面积数值应该与圆周率十分相近,边长也不是那么好算的,如果和半径为1的圆作对比,正65537边形的边长大约是0.000095872336310378200520953689053403,看起来着实有些吓人。 用尺规如何画出正65537边形? 与毕达哥拉斯树不同,正65537边形并非人人都有耐心画出来,但是早在1801年高斯出版的《算术研究》中,就证明了正P边形是可以用尺规画出来的,只要P是费马数,而正好65537就是第五个费马数,所以是能够用尺规画出来的,而且也是在边数为质数的多边形中,能用尺规画出来的边数最多的多边形。 但是关于正65537边形的具体尺规作图方法,高斯并没有阐述,其实利用最原始的尺规手绘作图,必然是一项浩大的工程,不过也曾经有一位叫做盖尔美斯的德国人,利用整整10年的时间做出了真正的正65537边形,据说当时的手稿就装满了一整个手提箱,现在还保存在哥本哈根大学内。 当然目前为止最简单的正65537边形的作图方法,可能就是直接画一个圆,再稍微做一下内切,并标上正65537边形,这也是最重要的一部,因为正65537边形和圆实在太像了,不仔细看,根本没有谁能看出区别,是不是很有意思了。 正65537边形就像世界上最神奇的数字一样奇葩,数学中还有不少有趣的现象,这也给人们带来了不一样的科学感受。

最奇葩多边形 正65537边形 用尺规画图奔溃65537条边


文章TAG:正65537边形  正65537边形的介绍  
下一篇