本文目录一览

1,响应时间提升 什么意思

所谓“灰阶响应时间”,即指彩色像素之间转换时间的平均值,这在实际应用中更为多见。而传统意义上的全程响应时间,则是指从纯黑转向纯白、又从纯白转成纯黑的响应时间之和。灰阶概念,能更好体现LCD在日常应用中的实用意义。
灰阶响应时间,也就是gtg(grey to grey)。说到灰阶响应时间,首先来看一下什么是灰阶。我们看到液晶屏幕上的每一个点,即一个像素,它都是由红、绿、蓝(rgb)三个子像素组成的,要实现画面色彩的变化,就必须对rgb三个子像素分别做出不同的明暗度的控制,以“调配”出不同的色彩。这中间明暗度的层次越多,所能够呈现的画面效果也就越细腻。以8 bit的面板为例,它能表现出256个亮度层次(2的8次方),我们就称之为256灰阶。

响应时间提升 什么意思

2,黑白响应时间和灰阶响应时间是不是一个概念

我们肉眼所见的液晶屏幕上的每一个点,即一个像素,是由红、绿、蓝(RGB)三个子像素组成的,每一个子像素的颜色值由0~255级(共256级)不同的亮度来表示,这些不同层次的亮度就称为“灰度色阶”(即灰阶)。 在这个渐变的范围内,数值越低颜色越暗(最暗为0),反之则越亮(最亮为255)。 而灰阶响应时间(GTG, Gray To Gray)就表示液晶显示器从某一个灰阶变换到另一个灰阶所需要的时间,它可以全面体现LCD各种色彩变化(即灰阶变化)的真实速度。   以前我们常说的响应时间,仅仅表示LCD在全黑和全白之间转换的速度,它只是灰阶响应时间的一种。在所有的灰阶级别中,全黑和全白之间的切换时间是最短的,因此,灰阶响应时间才是液晶显示器更为实际和重要的参数。

黑白响应时间和灰阶响应时间是不是一个概念

3,显示器的灰阶响应时间是干什么的

由于液晶分子的转动,LCD屏幕上每个点由前一种色彩过渡到后一种色彩的变化,会有一个时间过程,也就是我们通常所说的响应时间。因为每一个像素点不同灰阶之间的转换过程,是长短不一、非常复杂的,很难用一个客观的尺度来进行表示。因此,业内现有关于液晶响应时间的定义,试图以液晶分子由全黑到全白之间的转换速度作为面板整体响应时间的缩影,来代表液晶面板的快慢程度,通常又可称之为“On/Off”响应时间。由于液晶分子由黑到白和由白到黑的转换速度并不是完全一致的,为了能够尽量有意义的标示出液晶面板的反应速度,现又针对响应时间的定义,基本以“黑→白→黑”全程响应时间为标准。 事实上,液晶分子转换速度及扭转角度由施加电压的大小来决定。从全黑到全白液晶分子面临最大的扭转角度,需施以较大的电压,此时液晶分子扭转速度较快;而介于全黑、全白间的较小幅度灰阶变化,需施加较小电压来进行准确而精细的角度控制,因此液晶分子扭转速度反而要慢一些。通常来讲,液晶面板黑白间的响应时间最快,而其它灰阶之间也是构成绝大多数不同色彩变化的响应时间,要比黑白间的响应时间慢得多。这样看来,传统的On/Off用黑白转换时间来表示LCD响应时间,以偏概全,无法精确地表示LCD面板的整体响应时间。 数值越小越好,2MS的最好 如果你不是玩极品飞车或者是CS的狂热玩家的话,买5MS的就足够了 2MS的性能当然是最好的 但是价格要高些

显示器的灰阶响应时间是干什么的

4,灰阶响应时间是什么意思

说到灰阶响应时间,首先来看一下什么是灰阶。我们看到液晶屏幕上的每一个点,即一个像素,它都是由红、绿、蓝(RGB)三个子像素组成的,要实现画面色彩的变化,就必须对RGB三个子像素分别做出不同的明暗度的控制,以“调配”出不同的色彩。这中间明暗度的层次越多,所能够呈现的画面效果也就越细腻。以8 bit的面板为例,它能表现出256个亮度层次(2的8次方),我们就称之为256灰阶。 由于液晶分子的转动,LCD屏幕上每个点由前一种色彩过渡到后一种色彩的变化,这会有一个时间的过程,也就是我们通常所说的响应时间。因为每一个像素点不同灰阶之间的转换过程,是长短不一、错综复杂的,很难用一个客观的尺度来进行表示。因此,传统的关于液晶响应时间的定义,试图以液晶分子由全黑到全白之间的转换速度作为液晶面板的响应时间。由于液晶分子“由黑到白”与“由白到黑”的转换速度并不是完全一致的,为了能够尽量有意义的标示出液晶面板的反应速度,传统的响应时间的定义,基本以“黑—白—黑”全程响应时间作为标准。 但是当我们玩游戏或看电影时,屏幕内容不可能只是做最黑与最白之间的切换,而是五颜六色的多彩画面,或深浅不同的层次变化,这些都是在做灰阶间的转换。事实上,液晶分子转换速度及扭转角度由施加电压的大小来决定。从全黑到全白液晶分子面临最大的扭转角度,需施以较大的电压,此时液晶分子扭转速度较快。但涉及到不同不同明暗的灰度切换,实现起来就困难了,并且日常在显示器上看到的所有图像,都是灰阶变化的结果,因此黑白响应的测量方式已经不能正确的表达出实际的意义,为此,灰阶响应时间的概念就顺应而出了。 需要说明的是,虽然灰阶响应更难控制,需要的时间更长,但实际情况却有可能完全相反。因为厂商可以通过特殊的技术,使灰阶响应时间大大提高,反过来比传统的黑白响应时间短很多。比如使用响应时间加速芯片,可以使25ms黑白响应时间的产品拥有8ms的灰阶响应时间。灰阶响应时间与原来的黑白响应时间含义和性质差别很大,两者之间没有明确的对应关系,但又都是对液晶响应时间的描述。 从2005年开始灰阶响应逐渐为众多厂商所使用,总的来说,这些产品通常使用了更好的响应时间控制方式,比如各个象素的响应时间更加稳定、统一。灰阶响应时间短的产品影现象也更少一些,画面质量也更好,尤其在播放运动图像的时候,因此游戏玩家或者爱看影碟的用户可以更多考虑液晶显示器的这个参数

5,液晶显示器响应时间

响应时间指的是LCD显示器对于输入信号的反应速度,也就是液晶由暗转亮或者是由亮转暗的反应时间。一般来说分为两个部分--Rising(上升时间)和Falling(下降时间),而我们所说的响应时间指的就是两者之和。一般来说,响应时间越短越好。响应时间越短,用户在看移动的画面时就不会出现类似残影或者拖沓的痕迹,因为按照人眼的反应时间,响应时间如果超过40毫秒,就会出现运动图像的迟滞现象,因此响应时间对于对画面质量要求较高的用户而言,一直是非常关键的采购指标。但从目前来看,大多数液晶显示器在响应时间方面还不能满足用户的要求,这主要是因为受到液晶显示器成像原理的影响。 ??液晶显示器最基本的显示组件就是液晶,因此当我们谈及其响应时间时不得不先行介绍一下液晶的特性。液晶是介于固态和液态之间,不但具有固态晶体光学特性,又具有液态流动特性。而一般所用的液晶显示器,就是利用液晶的光电效应,藉由外部的电压控制,再通过液晶分子的折射特性,以及对光线的旋转能力来获得亮暗情况(或者称为可视光学的对比),进而就达到了显像的目的——通俗地说液晶显示器就是两块玻璃中间夹了一层(或多层)液晶材料,液晶材料在信号控制下改变自己的透光状态,于是你就能在玻璃面板前看到图像了。 ??在了解到液晶显示器的基本成像原理之后,我们就不难理解液晶显示器的响应时间实际上就是液晶分子将显示信号转换成画面所需的时间,因此其与液晶分子的排列方式和传送信号的能力有着很大的关系。 ??从液晶分子的信号传送能力来看,其又与液晶材料自身的优劣以及电流的控制、信号的强弱有着很大的关系。在液晶材料相同的情况之下,响应时间与信号的强弱成正比关系,信号越强,其响应时间越小,但这种小并不是绝对时间的缩短,而只是因为信号增强,画面显示更为清晰所带来的一种错觉现象。从目前来看,在众多的液晶显示器产品中,只有EMC和飞利浦所采用的液晶板具有较强的信号输出能力,画面显示与同类产品相比显得颇为亮丽。 ??从液晶分子的排列方式来看,目前主要有三种方式,每一种排列方式的响应时间有所差别。 ??第一种是平行排列方式,液晶分子在通电之后呈现一种平行的状态,按照一般的思维方式,两点之间直线距离最短,那么应该是液晶分子平行排列时响应时间最短,因为这样色滤镜中传递过来的信号才可以通过最短的距离传递到屏幕上,但是这样的排列方式却大大缩减了液晶显示器的可视角度,因此一般的液晶板厂商均不会采用。 ??第二种是一种扭曲排列方式,液晶分子在通电之后,自动排列为一种扭曲状态(螺旋状态),这种方式的优势是对于显示画面有了很大的提高,但是对于响应时间仍然没有任何提升。 ??最后一种是一种区域内平行排列的方式,液晶分子在通电之后,在每个不同的区域呈现出一种平行排列的状态,这种方式与第一种排列方式相比同样具有快速响应时间的特色,同时因为划分了无数个不同的区域,又解决了视角范围的问题,但因为其制造成本较高,目前只有一些具有规模生产优势的厂商才有所采用,如EMC的BM-568、三星的、飞利浦等的主打产品均是如此。 ??通过以上我们可以看出,响应时间作为液晶显示器的天生“瑕疵”,目前还并没有很好的解决之道,不是带来其它负面效应,就是因为成本太高,因此奉劝广大用户,在购买液晶显示器时最好购买那些具有规模效益品牌的产品,在采用同样材料的基础上,他们的价格要低很多。
灰阶的时间越短越好,你自己看看那些专业显示器的指标参数就知道了不过现在的js很黑的,有人可能把单程的相应时间当成全程的指标来表示,但是不明说,所以小心上当

6,什么是灰价4ms

通俗来讲吧。灰阶响应时间是衡量显示器进行不同灰阶变换时的速度,由于不同灰阶之间的变换速度并不相等,因此,灰阶响应时间是一个统计上的平均值,并非是一个整齐划一的时间,灰阶响应时间比传统的黑白响应时间更能反映一台液晶显示器在实际使用中的效果!是一种更为科学的衡量方法! ms是单位毫秒 这个数值越低越好!灰阶4ms的响应时间已经大大超过了人眼的极限性能,除非为青蛙设计显示器,否则再快已经没有意义了。 通常来说,液晶屏幕上人们肉眼所见的一个点,即一个像素,它是由红、绿、蓝(RGB)三个子像素组成的。每一个子像素,其背后的光源都可以显现出不同的亮度级别。而灰阶代表了由最暗到最亮之间不同亮度的层次级别。这中间层级越多,所能够呈现的画面效果也就越细腻。以8 bit panel为例,能表现2的8次方,等于256个亮度层次,我们就称之为256灰阶。LCD屏幕上每一个子像素,均由不同亮度层次的红、绿、蓝组合起来,最终形成不同的色彩点。可见,屏幕上每一个点的色彩变化,其实都是由构成这个点的三个RGB子像素的灰阶变化所带来的。 由于液晶分子的转动,LCD屏幕上每个点由前一种色彩过渡到后一种色彩的变化,会有一个时间过程,也就是我们通常所说的响应时间。因为每一个像素点不同灰阶之间的转换过程,是长短不一、非常复杂的,很难用一个客观的尺度来进行表示。因此,业内现有关于液晶响应时间的定义,试图以液晶分子由全黑到全白之间的转换速度作为面板整体响应时间的缩影,来代表液晶面板的快慢程度,通常又可称之为“on/off”响应时间。由于液晶分子由黑到白和由白到黑的转换速度并不是完全一致的,为了能够尽量有意义的标示出液晶面板的反应速度,现有针对响应时间的定义,基本以“黑—白—黑“全程响应时间为标准。 事实上,液晶分子转换速度及扭转角度由施加电压的大小来决定。从全黑到全白液晶分子面临最大的扭转角度,需施以较大的电压,此时液晶分子扭转速度较快;而介于全黑、全白间的较小幅度灰阶变化,需施加较小电压来进行准确而精细的角度控制,因此液晶分子扭转速度反而要慢一些。通常来讲,液晶面板黑白间的响应时间最快,而其它灰阶之间也是构成绝大多数不同色彩变化的响应时间,要比黑白间的响应时间慢得多。这样看来,传统的on/off用黑白转换时间来表示LCD响应时间,以偏概全,无法精确地表示LCD面板的整体响应时间。 在传统响应时间计算方式下,液晶显示器虽然可拥有25ms、16ms或更快的响应时间,然而其灰阶响应速度却可能超过40ms甚至60ms。所以,以黑白黑为响应时间标准无法全面表现LCD真实的反应速度。于是,灰阶响应时间(GTG,gary to gray)概念在被忽视了很长时间之后再一次被提出。而BenQ作为LCD显示器领导品牌,希望以灰阶响应时间的概念,全方位体现LCD在彩色切换(即灰阶变化)上的真实速度,并彻底颠覆传统响应时间计算方式,以对响应时间更准确的表述,力求符合消费者实际使用上的需求,并为消费者带来更大的价值。 在日常应用中,无论看电影、游戏或浏览网页,多数屏幕内容不会只是黑白间的转换,而是五颜六色的多彩画面,或深浅不同的层次变化,这些都是灰阶间的转换。一般消费者使用显示器时画面全黑或全白的比例极低,这需要尽可能缩短彩色间的转换时间。 目前液晶显示器通常标称的响应时间是屏幕从全黑到全白的变换时间。事实上,这种转换是所有色彩中最快的,而显示器在作灰阶变换的时候就不一定这样快了。问题是,我们通常面对的是一个五光十色的世界,纯黑或纯白的影像极少能遇到,这样也就是说,黑白响应时间事实上并不能全面衡量一台液晶显示器的真实性能。 以上的术语可过于专业,通俗来讲吧。灰阶响应时间是衡量显示器进行不同灰阶变换时的速度,由于不同灰阶之间的变换速度并不相等,因此,灰阶响应时间是一个统计上的平均值,并非是一个整齐划一的时间,灰阶响应时间比传统的黑白响应时间更能反映一台液晶显示器在实际使用中的效果!是一种更为科学的衡量方法! 灰阶4ms的响应时间已经大大超过了人眼的极限性能,除非为青蛙设计显示器,否则再快已经没有意义了。

文章TAG:灰阶响应时间  响应  响应时间  时间  灰阶响应时间  什么意思  
下一篇