本文目录一览

1,塑封和陶封MEMS封装有什么区别

看需求一般而言,陶瓷封装的性能要好一些,但是成本会增加
没什么区别,主要因为都想要一手货所以用起来会有点怪怪的但没啥区别。。呵呵

塑封和陶封MEMS封装有什么区别

2,陶瓷封装能手焊接吗

能。陶瓷封装的方法很多,陶瓷封装能手焊接,手工焊接采用的是通过任意部位焊接的方式,这一点与回流焊接不同。这是由特有的温度变化和残留应力造成的需要为防止局部突然受热、热冲击对元件造成的损伤(产生裂纹),应对元件进行预热等处理,以缓和对元件的热冲击。

陶瓷封装能手焊接吗

3,金属封装的晶振与陶瓷封装的晶振有什么区别

陶瓷封装的晶振精确程度没有金属的好,金属封装的里面是石英晶体,稳定是比较好,而且金属封装晶振有两种,一种是无源的,一种是有源的,一般都用无源的,但有源的抗干扰好,而且起振快
金属封装的晶振与陶瓷封装的晶振有什么区别?就是表贴的晶振,有外壳是金属的,还有外壳是黑色的陶瓷的,他们有什么区别,在性能上有什么不同?

金属封装的晶振与陶瓷封装的晶振有什么区别

4,芯片塑封和陶封区别

陶封是指陶瓷基板封装的芯片,塑封的是指塑料基板的,也就是常见的pcb板。 相对来说,陶瓷基板的封装灵活性不如塑封的,因为陶瓷基板内部的连接基本上是一一对应的,按照die的脚位顺序,不可交叉,而塑封的就比较灵活了,因为本质上就是一块pcb,在基板上可以灵活走线,可以自定义封装的脚位,可以做到跟其他公司的竞品或者本公司的产品pintopin。

5,集成电路有白色陶瓷黑紫色黑色的都有什么区别 白色陶瓷是什

集成电路有白色陶瓷、黑紫色、黑色的。其实大致可分为陶瓷和塑料封装两种。陶瓷封装又有黑陶和白陶两种。一般塑料封装多用于民用设备中,而陶瓷封装用于可靠性要求较高的场合。白色陶瓷多为氧化铝陶瓷,也有用其它陶瓷的。氧化铍陶瓷的散热性能较好,但是铍有毒,所以用的较少。密封性能如何,取决于封装工艺的质量。用于要求高可靠的场合多采用白色陶瓷。
期待看到有用的回答!

6,陶瓷封装管壳与基座的区别

用途不同、结构不同。1、用途不同:陶瓷封装管壳主要用于对芯片进行密封和保护,以防止芯片受到外部环境的影响;而基座则主要用于提供芯片与外部电路之间的连接和支撑,以实现芯片的功能。2、结构不同:陶瓷封装管壳通常具有圆柱形、方形等多种形状,其内部通常有空腔和引线等结构,以满足不同的封装需求;而基座则通常采用扁平的方形或长方形结构,其上通常有焊盘和引脚等结构,以实现芯片与外部电路之间的连接。

7,陶瓷基板封装的优越性有哪些啊

陶瓷基板封装的趋势 陶瓷基板产品问世,开启散热应用行业的发展,由于陶瓷基板散热特色,加上陶瓷基板具有高散热、低热阻、寿命长、耐电压等优点,随着生产技术、设备的改良,产品价格加速合理化,进而扩大LED产业的应用领域,如家电产品的指示灯、汽车车灯、路灯及户外大型看板等。陶瓷基板的开发成功,更将成为室内照明和户外亮化产品提供服务,使LED产业未来的市场领域更宽广。
陶瓷基板封装的优越性 ◆陶瓷基板的热膨胀系数接近硅芯片,可节省过渡层Mo片,省工、节材、降低成本; ◆减少焊层,降低热阻,减少空洞,提高成品率; ◆在相同载流量下 0.3mm厚的铜箔线宽仅为普通印刷电路板的10%; ◆ 优良的导热性,使芯片的封装非常紧凑,从而使功率密度大大提高,改善系统和装置的可靠性; ◆ 超薄型(0.25mm)陶瓷基板可替代BeO,无环保毒性问题; ◆载流量大,100A电流连续通过1mm宽0.3mm厚铜体,温升约17℃;100A电流连续通过2mm宽0.3mm厚铜体,温升仅5℃左右; ◆热阻低,10×10mm陶瓷基板的热阻0.63mm厚度陶瓷基片的热阻为0.31K/W ,0.38mm厚度陶瓷基片的热阻为0.19K/W,0.25mm厚度陶瓷基片的热阻为0.14K/W。 ◆ 绝缘耐压高,保障人身安全和设备的防护能力。 ◆ 可以实现新的封装和组装方法,使产品高度集成,体积缩小。

8,陶瓷电容器瓷介电容的封装材料是什么常用的封装方法

陶瓷电容器:用陶瓷做介质。在陶瓷基体两面喷涂银层,然后烧成银质薄膜作极板制 成。其特点是:体积小、耐热性好、损耗小、绝缘电阻高,但容量小,适用于高频电路。 几种常用电容器的结构和特点 电容器是电子设备中常用的电子元件,下面对几种常用电容器的结构和特点作以简要介 绍,以供大家参考。 1.铝电解电容器:它是由铝圆筒做负极、里面装有液体电解质,插人一片弯曲的铝带做正极制成。还需经直流电压处理,做正极的片上形成一层氧化膜做介质。其特点是容量大、但是漏电大、稳定性差、有正负极性,适于电源滤波或低频电路中,使用时,正、负极不要接反。 2.钽铌电解电容器:它用金属钽或者铌做正极,用稀硫酸等配液做负极,用钽或铌表面生成的氧化膜做介质制成。其特点是:体积小、容量大、性能稳定、寿命长。绝缘电阻大。温度性能好,用在要求较高的设备中。 铁电陶瓷电容容量较大,但损耗和温度系数较大,适用于低频电路。 4.云母电容器:用金属箔或在云母片上喷涂银层做电极板,极板和云母一层一层叠合后,再压铸在胶木粉或封固在环氧树脂中制成。其特点是:介质损耗小、绝缘电阻大。温度系数小,适用于高频电路。 5.薄膜电容器:结构相同于纸介电容器,介质是涤纶或聚苯乙烯。涤纶薄膜电容,介质常 数较高,体积小、容量大、稳定性较好,适宜做旁路电容。 聚苯乙烯薄膜电容器,介质损耗小、绝缘电阻高,但温度系数大,可用于高频电路。 6.纸介电容器:用两片金属箔做电极,夹在极薄的电容纸中,卷成圆柱形或者扁柱形芯 子,然后密封在金属壳或者绝缘材料壳中制成。它的特点是体积较小,容量可以做得较大。但是固有电感和损耗比较大,适用于低频电路。 7 金属化纸介电容器:结构基本相同于纸介电容器,它是在电容器纸上覆上一层金属膜来 代金属箔,体积小、容里较大,一般用于低频电路。 8 油浸纸介电容器:它是把纸介电容浸在经过特别处理的油里,能增强其耐压。其特点是 电容量大、耐压高,但体积较大。 此外,在实际应用中,第一要根据不同的用途选择不同类型的电容器;第二要考虑到电容 器的标称容量,允许误差、耐压值、漏电电阻等技术参数;第三对于有正、负极性的电解电容器来说,正、负极在焊接时不要接反 电容器的作用 电容器在电子线路中的作用一般概括为:通交流、阻直流。 电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。 在集成电路、超大规模集成电路已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。 作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。 电容器还常常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。 计时:电容器与电阻器配合使用,确定电路的时间常数。 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。 整流:在预定的时间开或者关半闭导体开关元件。 储能:储存电能,用于必须要的时候释放。例如相机闪光灯,加热设备等等。 如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能可以供一个手机使用一天。
同问。。。

9,IC的封装是指什么

IC就是集成电路,封装就是指用环氧塑封料(应用最普及)将裸芯片包起来,使之形成一个有固定引线脚数的IC芯片。
封装,就是指把硅片上的电路管脚,用导线接引到外部接头处,以便与其它器件连接.封装形式是指安装半导体集成电路芯片用的外壳。它不仅起着安装、固定、密封、保护芯片及增强电热性能等方面的作用,而且还通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。因为芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。另一方面,封装后的芯片也更便于安装和运输。由于封装技术的好坏还直接影响到芯片自身性能的发挥和与之连接的pcb(印制电路板)的设计和制造,因此它是至关重要的。 衡量一个芯片封装技术先进与否的重要指标是芯片面积与封装面积之比,这个比值越接近1越好。封装时主要考虑的因素: 1、 芯片面积与封装面积之比为提高封装效率,尽量接近1:1; 2、 引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能; 3、 基于散热的要求,封装越薄越好。 封装大致经过了如下发展进程: 结构方面:to->dip->plcc(plastic leaded chip carrier) 带引线的塑料芯片载体。表面贴装型封装之一->qfp->bga ->csp; 材料方面:金属、陶瓷->陶瓷、塑料->塑料; 引脚形状:长引线直插->短引线或无引线贴装->球状凸点; 装配方式:通孔插装->表面组装一、dip双列直插式封装 dip(dualin-line package)是指采用双列直插形式封装的集成电路芯片,绝大多数中小规模集成电路(ic)均采用这种封装形式,其引脚数一般不超过100个。采用dip封装的cpu芯片有两排引脚,需要插入到具有dip结构的芯片插座上。当然,也可以直接插在有相同焊孔数和几何排列的电路板上进行焊接。dip封装的芯片在从芯片插座上插拔时应特别小心,以免损坏引脚。 dip封装具有以下特点: 1.适合在pcb(印刷电路板)上穿孔焊接,操作方便。 2.芯片面积与封装面积之间的比值较大,故体积也较大。 intel系列cpu中8088就采用这种封装形式,缓存(cache)和早期的内存芯片也是这种封装形式。 二、qfp塑料方型扁平式封装和pfp塑料扁平组件式封装 qfp(plastic quad flat package)封装的芯片引脚之间距离很小,管脚很细,一般大规模或超大型集成电路都采用这种封装形式,其引脚数一般在100个以上。用这种形式封装的芯片必须采用smd(表面安装设备技术)将芯片与主板焊接起来。采用smd安装的芯片不必在主板上打孔,一般在主板表面上有设计好的相应管脚的焊点。将芯片各脚对准相应的焊点,即可实现与主板的焊接。用这种方法焊上去的芯片,如果不用专用工具是很难拆卸下来的。 pfp既可以是正方形,也可以是长方形。 qfp/pfp封装具有以下特点: 1.适用于smd表面安装技术在pcb电路板上安装布线。 2.适合高频使用。 3.操作方便,可靠性高。 4.芯片面积与封装面积之间的比值较小。 intel系列cpu中80286、80386和某些486主板采用这种封装形式。 三、pga插针网格阵列封装 pga(pin grid array package)芯片封装形式在芯片的内外有多个方阵形的插针,每个方阵形插针沿芯片的四周间隔一定距离排列。根据引脚数目的多少,可以围成2-5圈。安装时,将芯片插入专门的pga插座。为使cpu能够更方便地安装和拆卸,从486芯片开始,出现一种名为zif的cpu插座,专门用来满足pga封装的cpu在安装和拆卸上的要求。 zif(zero insertion force socket)是指零插拔力的插座。把这种插座上的扳手轻轻抬起,cpu就可很容易、轻松地插入插座中。然后将扳手压回原处,利用插座本身的特殊结构生成的挤压力,将cpu的引脚与插座牢牢地接触,绝对不存在接触不良的问题。而拆卸cpu芯片只需将插座的扳手轻轻抬起,则压力解除,cpu芯片即可轻松取出。 pga封装具有以下特点: 1.插拔操作更方便,可靠性高。 2.可适应更高的频率。 intel系列cpu中,80486和pentium、pentium pro均采用这种封装形式。 四、bga球栅阵列封装 随着集成电路技术的发展,对集成电路的封装要求更加严格。这是因为封装技术关系到产品的功能性,当ic的频率超过100mhz时,传统封装方式可能会产生所谓的“crosstalk”现象,而且当ic的管脚数大于208 pin时,传统的封装方式有其困难度。因此,除使用qfp封装方式外,现今大多数的高脚数芯片(如图形芯片与芯片组等)皆转而使用bga(ball grid array package)封装技术。bga一出现便成为cpu、主板上南/北桥芯片等高密度、高性能、多引脚封装的最佳选择。 bga封装具有以下特点: 1.i/o引脚数虽然增多,但引脚之间的距离远大于qfp封装方式,提高了成品率。 2.虽然bga的功耗增加,但由于采用的是可控塌陷芯片法焊接,从而可以改善电热性能。 3.信号传输延迟小,适应频率大大提高。 4.组装可用共面焊接,可靠性大大提高。 bga封装方式经过十多年的发展已经进入实用化阶段。1987年,日本西铁城(citizen)公司开始着手研制塑封球栅面阵列封装的芯片(即bga)。而后,摩托罗拉、康柏等公司也随即加入到开发bga的行列。五、csp芯片尺寸封装 随着全球电子产品个性化、轻巧化的需求蔚为风潮,封装技术已进步到csp(chip size package)。它减小了芯片封装外形的尺寸,做到裸芯片尺寸有多大,封装尺寸就有多大。即封装后的ic尺寸边长不大于芯片的1.2倍,ic面积只比晶粒(die)大不超过1.4倍。 csp封装具有以下特点: 1.满足了芯片i/o引脚不断增加的需要。 2.芯片面积与封装面积之间的比值很小。 3.极大地缩短延迟时间。 csp封装适用于脚数少的ic,如内存条和便携电子产品。未来则将大量应用在信息家电(ia)、数字电视(dtv)、电子书(e-book)、无线网络wlan/gigabitethemet、adsl/手机芯片、蓝芽(bluetooth)等新兴产品中。 六、mcm多芯片模块 为解决单一芯片集成度低和功能不够完善的问题,把多个高集成度、高性能、高可靠性的芯片,在高密度多层互联基板上用smd技术组成多种多样的电子模块系统,从而出现mcm(multi chip model)多芯片模块系统。 mcm具有以下特点: 1.封装延迟时间缩小,易于实现模块高速化。 2.缩小整机/模块的封装尺寸和重量。 3.系统可靠性大大提高。 ps: 2.54厘米=1英寸(也叫一个ic间距、是器件的规范标准)
IC封装所指的是它的规格及引脚尺寸等等

文章TAG:陶瓷封装  塑封和陶封MEMS封装有什么区别  
下一篇