本文目录一览

1,电阻应变片式传感器的工作原理是什么常用的测量电路由哪些各有

电阻应变片的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。

电阻应变片式传感器的工作原理是什么常用的测量电路由哪些各有

2,电阻应变片传感器与压阻式传感器工作原理的区别和联系

电阻应变片式主要是金属丝式、铂式,而压阻式的材料主要是半导体,它们都是受力产生变形,从而导致电阻产生变化,所以他们都属于电阻式传感器

电阻应变片传感器与压阻式传感器工作原理的区别和联系

3,应变式传感器的测量电路的工作原理是什么

应变式传感器的测量电路是把应变片的变形转换为电阻的变化,以便方便地显示被测量的大小。
电阻应变片的工作原理是基于电阻应变效应,即在导体产生机械变形时,它的电阻值相应发生变化。
惠斯登电桥。四个电阻,桥压供电。当电阻发生变化出,输出电压发生响应的变化。

应变式传感器的测量电路的工作原理是什么

4,传感器综合实验内容和步骤是什么

实验一电阻应变片传感器综合实验 一、实验目的: 1.研究实际应用中采用的直流应变电桥的原理和性能。 2.研究和比较直流单臂、直流半桥、直流全桥的灵敏度和特性。 二、实验仪器 CSY2000型传感器系统实验仪一台 三、实验原理 应变式电阻传感器是目前用于测量力、力矩、压力、加速度、重量等参数最广泛的传感器之一。 它具有悠久的历史,但新型应变片仍在不断出现,它是利用应变效应制造的一种测量微小变化量(机械)的理想传感器。 1.应变效应 导体或半导体材料在受到外界力(拉力或压力)作用时,产生机械变形,机械变形导致其阻值变化,这种因形变而使其阻值发生变化的现象称为“ 应变效应”,导体或半导体的阻值随其机械应变而变化的道理很简单:因为导体和半导体的电阻 与电阻率ρ及其几何尺寸(其L为长度,A为截面积)有关,当导体或半导体在受外力作用时,这三者都会发生变化,所以才会引起电阻的变化。 通过测量阻值的大小,就可以反映外界作用的大小。 2.电阻应变片的工作原理 电阻应变片种类繁多,但其基本结构大体相似,现以金属丝绕式应变片结构为例加以说明,其结构示意图如图1 所示。 将金属电阻丝粘贴在基片上,上面覆盖一层薄膜,使它们变成一个整体,这就是电阻丝应变片的基本结构。 图1 电阻丝应变片的结构示意图 1—基片 2—直径为0.025mm左右和高电阻率的合金电阻丝 3—覆盖层 4—引线。 用以和外接导线连接 L—敏感栅的长度 b—敏感栅的宽度 (1)灵敏系数

5,传感器与应变片是一个东西吗比较一下它们

应变片是测量应力大小的传感器(应变片式传感器)的一个核心元件。传感器有许多不同类型,例如电容式传感器,电感式传感器,光纤传感器等等。而且对于应变片式传感器,应变片也只是它的一个传感元件,它还包括后续处理电路,甚至还包括具有计算和显示功能的部件。
应变片是传感器的心脏,它将弹性元件的形变转化成电阻的变化再通过电桥变化成电压或者电流输出,
能把被测物理量或化学量转变成为电量的一种器件或元件叫传感器(又称变换器)其中我们平时接触较多物理量就有温度、湿度、质量、重量、力、压强、速度、加速度、长度、角度、液位、流量、密度等;与此相以对应,生产和生活中就需要温度传感器、湿度传感器、称重测力传感器、压强传感器等。而应变片知识随着外界压力的变化,阻值...随之变化的一器件。应变片只是传感器的一种。而传感器有很多种。
传感器不仅要具有感知的能力(敏感性),还要具有传输的能力。这里所说的传输不是简单的连接,还要包括兼容、线性等很多问题。因此,应变片只能算作敏感元件。

6,压力传感器是怎样完成力和相关参数的转换工作原理分类具体应用

压力传感器工作原理压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D 转换和CPU )显示或执行机构。 金属电阻应变片的内部结构如图1 所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω。cm2/m ) S ——导体的截面积(cm2 ) L ——导体的长度(m ) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情 2 、陶瓷压力传感器原理及应用 抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0 ~70℃,并可以和绝大多数介质直接接触。 陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40 ~135 ℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。 3 、扩散硅压力传感器原理及应用 工作原理被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一压力的标准测量信号。原理图 4 、蓝宝石压力传感器原理与应用 利用应变电阻式工作原理,采用硅- 蓝宝石作为半导体敏感元件,具有无与伦比的计量特性。 蓝宝石系由单晶体绝缘体元素组成,不会发生滞后、疲劳和蠕变现象;蓝宝石比硅要坚固,硬度更高,不怕形变;蓝宝石有着非常好的弹性和绝缘特性(1000 OC 以内),因此,利用硅- 蓝宝石制造的半导体敏感元件,对温度变化不敏感,即使在高温条件下,也有着很好的工作特性;蓝宝石的抗辐射特性极强;另外,硅- 蓝宝石半导体敏感元件,无p-n 漂移,因此,从根本上简化了制造工艺,提高了重复性,确保了高成品率。 用硅- 蓝宝石半导体敏感元件制造的压力传感器和变送器,可在最恶劣的工作条件下正常工作,并且可靠性高、精度好、温度误差极小、性价比高。 表压压力传感器和变送器由双膜片构成:钛合金测量膜片和钛合金接收膜片。印刷有异质外延性应变灵敏电桥电路的蓝宝石薄片,被焊接在钛合金测量膜片上。被测压力传送到接收膜片上(接收膜片与测量膜片之间用拉杆坚固的连接在一起)。在压力的作用下,钛合金接收膜片产生形变,该形变被硅- 蓝宝石敏感元件感知后,其电桥输出会发生变化,变化的幅度与被测压力成正比。 传感器的电路能够保证应变电桥电路的供电,并将应变电桥的失衡信号转换为统一的电信号输出(0-5 ,4-20mA或0-5V)。在绝压压力传感器和变送器中,蓝宝石薄片,与陶瓷基极玻璃焊料连接在一起,起到了弹性元件的作用,将被测压力转换为应变片形变,从而达到压力测量的目的。 5 、压电压力传感器原理与应用 压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的 “居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石英逐渐被其他的压电晶体所替代。而酒石酸钾钠具有很大的压电灵敏度和压电系数,但是它只能在室温和湿度比较低的环境下才能够应用。磷酸二氢胺属于人造晶体,能够承受高温和相当高的湿度,所以已经得到了广泛的应用。 现在压电效应也应用在多晶体上,比如现在的压电陶瓷,包括钛酸钡压电陶瓷、PZT 、铌酸盐系压电陶瓷、铌镁酸铅压电陶瓷等等。 压电效应是压电传感器的主要工作原理,压电传感器不能用于静态测量,因为经过外力作用后的电荷,只有在回路具有无限大的输入阻抗时才得到保存。实际的情况不是这样的,所以这决定了压电传感器只能够测量动态的应力。 压电传感器主要应用在加速度、压力和力等的测量中。压电式加速度传感器是一种常用的加速度计。它具有结构简单、体积小、重量轻、使用寿命长等优异的特点。压电式加速度传感器在飞机、汽车、船舶、桥梁和建筑的振动和冲击测量中已经得到了广泛的应用,特别是航空和宇航领域中更有它的特殊地位。压电式传感器也可以用来测量发动机内部燃烧压力的测量与真空度的测量。也可以用于军事工业,例如用它来测量枪炮子弹在膛中击发的一瞬间的膛压的变化和炮口的冲击波压力。它既可以用来测量大的压力,也可以用来测量微小的压力。 压电式传感器也广泛应用在生物医学测量中,比如说心室导管式微音器就是由压电传感器制成的,因为测量动态压力是如此普遍,所以压电传感器的应用就非常广泛

7,常用应变式测力传感器主要有哪几种各有什么特点

电压式和电阻式,差不多吧。
最简单的应变传感器就是电阻应变片,直接贴装在被测物体表面就可以,应力的话是通过标定转换应变来的。应变测量的方法很多,光纤,振弦等都可以的。 应力应变就是应力与应变的统称。应力定义为"单位面积上所承受的附加内力"。物体受力产生变形时,体内各点处变形程度一般并不相同。用以描述一点处变形的程度的力学量是该点的应变。 传感器测量原理是光学三角法:半导体激光器被镜片聚焦到被测物体。反射光被镜片收集,投射到cmos阵列上;信号处理器通过三角函数计算阵列上的光点位置得到距物体的距离。根据传感器工作原理,可分为物理传感器和化学传感器二大类:一、传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。二、化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。现在越来越受到工业控制青睐的激光传感器发展迅猛,激光传感器不仅应用广泛,更主要的是利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。zlds10x系列品牌激光位移传感器具有数字化集成一体化结构,0.01%高分辨率,0.1%高线性度,9.4khz高响应、ip67防护等级和可同步等高性能。工作温度范围宽,特别适用于工业环境高精度应用。

8,简述电阻应变片式测力传感器的工作原理

这个问题有难度 你这想法就够邪恶 邪恶就好 呵呵 在幽默点 坏坏的 或者适当的时候你可以要求她啊
您好,我是余姚赛尔斯技术员。一般电阻应变片式传感器通过压力使弹性体发生形变导致电阻应变片发生形变,从而改变阻值改变输出型号。您可以去www.yyloadcell.com看看,里面有各种型号称重传感器参数和说明
电阻应变式称重传感器原理 电阻应变式称重传感器是基于这样一个原理:弹性体(弹性元件,敏感梁)在外力作用下产生弹性变形,使粘贴在他表面的电阻应变片(转换元件)也随同产生变形,电阻应变片变形后,它的阻值将发生变化(增大或减小),再经相应的测量电路把这一电阻变化转换为电信号(电压或电流),从而完成了将外力变换为电信号的过程。 由此可见,电阻应变片、弹性体和检测电路是电阻应变式称重传感器中不可缺少的几个主要部分。下面就这三方面简要论述。    一、电阻应变片 电阻应变片是把一根电阻丝机械的分布在一块有机材料制成的基底上,即成为一片应变片。他的一个重要参数是灵敏系数K。我们来介绍一下它的意义。 设有一个金属电阻丝,其长度为L,横截面是半径为r的圆形,其面积记作S,其电阻率记作ρ,这种材料的泊松系数是μ。当这根电阻丝未受外力作用时,它的电阻值为R: R =ρL/S(Ω) (2—1)   当他的两端受F力作用时,将会伸长,也就是说产生变形。设其伸长ΔL,其横截面积则缩小,即它的截面圆半径减少Δr。此外,还可用实验证明,此金属电阻丝在变形后,电阻率也会有所改变,记作Δρ。 对式(2--1)求全微分,即求出电阻丝伸长后,他的电阻值改变了多少。我们有: ΔR =ΔρL/S + ΔLρ/S –ΔSρL/S2 (2—2) 用式(2--1)去除式(2--2)得到 ΔR/R =Δρ/ρ + ΔL/L – ΔS/S (2—3) 另外,我们知道导线的横截面积S = πr2,则 Δs = 2πr*Δr,所以 ΔS/S =2Δr/r (2—4) 从材料力学我们知道 Δr/r =-μΔL/L (2—5) 其中,负号表示伸长时,半径方向是缩小的。μ是表示材料横向效应泊松系数。把式(2—4)(2—5)代入(2--3),有 ΔR/R =Δρ/ρ + ΔL/L + 2μΔL/L =(1 + 2μ(Δρ/ρ)/(ΔL/L))*ΔL/L = K *ΔL/L(2--6) 其中 K = 1 +2μ +(Δρ/ρ)/(ΔL/L) (2--7) 式(2--6))说明了电阻应变片的电阻变化率(电阻相对变化)和电阻丝伸长率(长度相对变化)之间的关系。   需要说明的是:灵敏度系数K值的大小是由制作金属电阻丝材料的性质决定的一个常数,它和应变片的形状、尺寸大小无关,不同的材料的K值一般在1.7—3.6之间;其次K值是一个无因次量,即它没有量纲。 在材料力学中ΔL/L称作为应变,记作ε,用它来表示弹性往往显得太大,很不方便 常常把它的百万分之一作为单位,记作με。这样,式(2--6)常写作: ΔR/R = Kε(2—8)   二、弹性体   弹性体是一个有特殊形状的结构件。它的功能有两个,首先是它承受称重传感器所受的外力,对外力产生反作用力,达到相对静平衡;其次,它要产生一个高品质的应变场(区),使粘贴在此区的电阻应变片比较理想的完成应变棗电信号的转换任务。 以托利多公司的SB系列称重传感器的弹性体为例,来介绍一下其中的应力分布。 设有一带有肓孔的长方体悬臂梁。   肓孔底部中心是承受纯剪应力,但其上、下部分将会出现拉伸和压缩应力。主应力方向一为拉神,一为压缩,若把应变片贴在这里,则应变片上半部将受拉伸而阻值增加,而应变片的下半部将受压缩,阻值减少。下面列出肓孔底部中心点的应变表达式,而不再推导。 ε= (3Q(1+μ)/2Eb)*(B(H2-h2)+bh2)/ (B(H3-h3)+bh3) (2--9) 其中:Q--截面上的剪力;E--扬氏模量:μ—泊松系数;B、b、H、h—为梁的几何尺寸。 需要说明的是,上面分析的应力状态均是“局部”情况,而应变片实际感受的是“平均”状态。 三、检测电路  检测电路的功能是把电阻应变片的电阻变化转变为电压输出。因为惠斯登电桥具有很多优点,如可以抑制温度变化的影响,可以抑制侧向力干扰,可以比较方便的解决称重传感器的补偿问题等,所以惠斯登电桥在称重传感器中得到了广泛的应用。 因为全桥式等臂电桥的灵敏度最高,各臂参数一致,各种干扰的影响容易相互抵销,所以称重传感器均采用全桥式等臂电桥。 天光传感,一个拥有高效、严谨而和谐的团队,塑造一个满客户需求的团队和组织,通过高效的团队合作、知识的共享、资源的互补来创造价值。在压力传感器、称重传感器、张力传感器、液位传感器、电子秤、温控表、称重传感器接线盒等自动化工业产品中有很强的技术实力! 参考资料 http://www.tg688.com/shownews.asp?id=69

9,什么叫做电阻应变片

电阻应变片也称电阻应变计或应变计或应变片,是一种能将机械构件上应变的变化转换为电阻变化的传感元件。  以电阻应变片为核心元件可以制成应变式传感器。  应变式传感器,是利用电阻应变效应制成的传感器,是常用的传感器之一。  电阻应变效应,是指金属导体的电阻值随其机械变形而发生变化的现象
最简单的说法就是变阻器 电阻应变片可能是你们的职业说法吧 功能都是差不多的
金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m)
分类:金属电阻应变片和半导体电阻应变片 组成:基片,就像主板一样,东西往上面放的 电阻丝,一般采用直径为0.025mm左右的高电阻率合金制成,压电效应的核心。 覆盖层,保护作用 引线,用以和外接导线连接
电阻应变计 resistance strain gage 能将工程构件上的应变,即尺寸变化转换成为电阻变化的变换器(又称电阻应变片),简称为应变计。一般由敏感栅、引线、粘结剂、基底和盖层组成。 将电阻应变计安装在构件表面,构件在受载荷后表面产生的微小变形(伸长或缩短),会使应变计的敏感栅随之变形,应变计的电阻就发生变化,其变化率和安装应变计处构件的应变 ε成比例。测出此电阻的变化,即可按公式算出构件表面的应变,以及相应的应力。 将电阻应变计安装在构件表面,在应变计轴线方向的单向应力作用下,敏感栅的电阻变化率和引起此电阻变化的构件表面在应变计轴线方向的应变ε之比,称为电阻应变计的灵敏系数k,即它表示电阻应变计输出信号与输入信号在数量上的关系,是电阻应变计的主要工作特性之一。 敏感栅的栅长一般为 0.2~100毫米, 电阻为60~1000欧(最常用的为120欧和350欧),测量范围为几微应变至数万微应变(με,1微应变=10-6毫米/毫米)。 按敏感栅的材料,电阻应变计分为金属电阻应变计和半导体应变计两类。 金属电阻应变计 金属电阻应变计的种类、所使用的材料和安装方法分述如下: 丝式应变计 这种应变计的敏感栅最常用的有丝绕式和短接线式两种。①丝绕式的敏感栅是用直径 0.015~0.05毫米的金属丝连续绕制而成,端部呈半圆形。如果安装应变计的构件表面存在两个方向的应变,此圆弧端除了感受纵向应变外,还能感受横向应变,后者称为横向效应。若对测量精度的要求较高,应考虑横向效应的影响并进行修正。②短接线式的敏感栅采用较粗的横丝,将平行排列的一组直径为 0.015~0.05毫米的金属纵丝交错连接而成,端部是平直的。它的横向效应很小,但耐疲劳性能不如丝绕式的。 箔式应变计 这种应变计的敏感栅用厚度 0.002~0.005毫米的金属箔刻蚀成形。 用此法易于制成各种形状的应变计。箔栅有如下优点:①横向部分可以做成比较宽的栅条,使横向效应较小;②箔栅很薄,能较好地反映构件表面的变形,因而测量精度较高;③便于大量生产;④能制成栅长很短的应变计。因此,箔式应变计得到广泛应用。 临时基底应变计 还有一种临时基底型的金属电阻应变计。制造时将用紫铜等材料制成的敏感栅粘在作为临时基底的框架上,使用时用粘结剂将敏感栅固定在构件上,然后将临时基底去掉。这种应变计多用于测量高温条件下的应变。 应用材料和安装方法 制造敏感栅的常用材料有铜镍合金(康铜)、镍铬系合金、铁铬铝合金、镍铬铁合金、铂和铂合金等。前三种最常用。这些合金的灵敏系数为2~6。 所用的粘结剂分为有机粘结剂和无机粘结剂两类。在一般情况下,前者用在温度低于400℃时,后者则用于高温条件下。有机粘结剂包括硝化纤维、氰基丙烯酸酯、环氧树脂、酚醛树脂、有机硅树脂、聚酰亚胺等。除前两种之外,使用时一般都要加温加压使其固化。常用的无机粘结剂有磷酸盐和喷涂用的金属氧化物。前者在使用时须加温固化。用作基底的材料有纸、胶膜、玻璃纤维布、金属薄片(或金属网)等。 把应变计粘贴在构件表面上有不同的安装方法:用纸、胶膜、玻璃纤维布作基底的应变计,用粘结剂粘贴;用金属薄片或金属网作基底的应变计,用点焊或滚焊固定在金属构件上;对于临时基底型应变计,用粘结剂或用氧炔焰或等离子焰将金属氧化物熔化并喷涂的方法,将敏感栅固定于金属基底或构件表面上。 只用一个敏感栅的应变计,适用于测量单向应变。测量平面应力场的应变时,可采用应变花。 半导体应变计 将半导体应变计安装在被测构件上,在构件承受载荷而产生应变时,其电阻率将发生变化。半导体应变计就是以这种压阻效应作为理论基础的,其敏感栅由锗或硅等半导体材料制成。这种应变计可分为体型(图5)和扩散型两种。前者的敏感栅由单晶硅或锗等半导体经切片和腐蚀等方法制成,后者的敏感栅则是将杂质扩散在半导体材料中制成的。半导体应变计的优点是灵敏系数大,机械滞后和蠕变小,频率响应高;缺点是电阻温度系数大,灵敏系数随温度而显著变化,应变和电阻之间的线性关系范围小。正确选择半导体材料和改进生产工艺,这些缺点可望得到克服。半导体应变计多用于测量小的应变(10-1微应变到数百微应变),已广泛用于应变测量和制造各种类型的传感器(见电阻应变计式传感器)。 半导体应变计中用薄膜作敏感栅的称为薄膜应变计。它是将金属、合金或半导体材料,用真空镀膜、沉积或溅射方法,在绝缘基底上制成一定形状的薄膜,其厚度从几十纳米至几万纳米不等。此外,还有灵敏系数很大的p-n结半导体应变计和压电场效应应变计。 电阻应变计的品种日益增加,应用范围也日益扩大,除了常用的品种和规格外,还有各种不同用途的应变计,如温度自补偿应变计、大应变应变计、应力计、测量残余应力的应变花等。利用箔式应变计的制造技术,还能生产出可以测量温度、压力、疲劳寿命、裂纹扩展情况的各种片式检测元件(包括测温片、测压片、疲劳寿命计、裂纹扩展计等)。

文章TAG:应变片传感器  电阻应变片式传感器的工作原理是什么常用的测量电路由哪些各有  
下一篇