什么是平方数,平方数是什么
来源:整理 编辑:去装修 2023-04-18 21:22:56
本文目录一览
1,平方数是什么
http://baike.baidu.com/view/942218.htm
自己看
2,什么是平方数
在数学上平方数也称完全平方数指的是可以写成某个整数的平方的数即其平方根为整数的数显然平方数都是非负整数而最小的平方数为0平方数(或称完全平方数),是指可以写成某个整数的平方的数,即其平方根为整数的数。例如,9 = 3 × 3,9是一个平方数。定义:如果a=m^2(m是整数),则a称为平方数。所以不是所有实数都是平方数,负数就更不是了
3,什么叫平方数
平方数平方数,或称正方形数,是可以写成整数的二次方的数。若n=m^2,n和m均是整数,n就是平方数。假如将n个点排成矩形,可以排成一个正方形。 1: + x4: x + x x+ + x x9: x x + x x xx x + x x x+ + + x x x16: x x x + x x x xx x x + x x x xx x x + x x x x+ + + + x x x x25: x x x x + x x x x x x x x x + x x x x x x x x x + x x x x x x x x x + x x x x x + + + + + x x x x x 从上面的图形中可以得出精彩的结论,★1^2=1;2^2=1+3;3^2=1+3+5;4^2=1+3+5+7;............n^2=1+3+5+7+...+(2n-1)★★1^2=1;2^2=1+2+1;3^2=1+2+3+2+1;4^2=1+2+3+4+3+2+1;............n^2=1+2+3+4+...+n+1+2+3+4+...+(n-1);★★★三个连续的平方数是勾股数组的仅一组,即3^2+4^2=5^2★★★★n+...4+3+2+1n+...4+3+2n+...4+3n+...4...n上面所有数相加是平方数和,你也许说没任何意义但可以根据他巧得平方和公式S,即S=nC(n+1,2)-C(n+2,3)一些其他性质第一个平方数是1。第n个平方数是n2,等于首n个单数的和。 每4个连续的自然数相乘加一,必定会等于一个平方数。 拉格朗日定理∶每个自然数均可表示成4个平方数之和。3个平方数之和不能表示形式如4k(8l + 7)的数。 如果在一个正整数的因数分解式中,没有一个数有形式如4k+3的质数次方,该正整数可以表示成两个平方数之和。
4,平方数是什么
数学上,平方数,或称完全平方数,是指可以写成某个整数的平方的数,即其平方根为整数的数.例如,9 = 3 × 3,它是一个平方数.平方数也称正方形数,若 n 为平方数,将 n 个点排成矩形,可以排成一个正方形.若将平方数概念扩展到有理数,则两个平方数的比仍然是平方数,例如,(2 × 2) / (3 × 3) = 4/9 = 2/3 × 2/3.若一个整数没有除了 1 之外的平方数为其因子,则称其为无平方数因数的数.(一)完全平方数的性质 一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数,也叫做平方数。例如: 0,1,4,9,16,25,36,49,64,81,100,121,144,169,196,225,256,289,324,361,400,441,484,… 观察这些完全平方数,可以获得对它们的个位数、十位数、数字和等的规律性的认识。下面我们来研究完全平方数的一些常用性质: 性质1:完全平方数的末位数只能是0,1,4,5,6,9。 性质2:奇数的平方的个位数字为奇数,十位数字为偶数。 证明 奇数必为下列五种形式之一: 10a+1, 10a+3, 10a+5, 10a+7, 10a+9 分别平方后,得 (10a+1)=100+20a+1=20a(5a+1)+1 (10a+3)=100+60a+9=20a(5a+3)+9 (10a+5)=100+100a+25=20 (5a+5a+1)+5 (10a+7)=100+140a+49=20 (5a+7a+2)+9 (10a+9)=100+180a+81=20 (5a+9a+4)+1 综上各种情形可知:奇数的平方,个位数字为奇数1,5,9;十位数字为偶数。 性质3:如果完全平方数的十位数字是奇数,则它的个位数字一定是6;反之,如果完全平方数的个位数字是6,则它的十位数字一定是奇数。 证明 已知=10k+6,证明k为奇数。因为的个位数为6,所以m的个位数为4或6,于是可设m=10n+4或10n+6。则 10k+6=(10n+4)=100+(8n+1)x10+6 或 10k+6=(10n+6)=100+(12n+3)x10+6 即 k=10+8n+1=2(5+4n)+1 或 k=10+12n+3=2(5+6n)+3 ∴ k为奇数。 推论1:如果一个数的十位数字是奇数,而个位数字不是6,那么这个数一定不是完全平方数。 推论2:如果一个完全平方数的个位数字不是6,则它的十位数字是偶数。 性质4:偶数的平方是4的倍数;奇数的平方是4的倍数加1。 这是因为 (2k+1)=4k(k+1)+1 (2k)=4 性质5:奇数的平方是8n+1型;偶数的平方为8n或8n+4型。 在性质4的证明中,由k(k+1)一定为偶数可得到(2k+1)是8n+1型的数;由为奇数或偶数可得(2k)为8n型或8n+4型的数。 性质6:平方数的形式必为下列两种之一:3k,3k+1。 因为自然数被3除按余数的不同可以分为三类:3m,3m+1, 3m+2。平方后,分别得 (3m)=9=3k (3m+1)=9+6m+1=3k+1 (3m+2)=9+12m+4=3k+1 同理可以得到: 性质7:不能被5整除的数的平方为5k±1型,能被5整除的数的平方为5k型。 性质8:平方数的形式具有下列形式之一:16m,16m+1, 16m+4,16m+9。 除了上面关于个位数,十位数和余数的性质之外,还可研究完全平方数各位数字之和。例如,256它的各位数字相加为2+5+6=13,13叫做256的各位数字和。如果再把13的各位数字相加:1+3=4,4也可以叫做256的各位数字的和。下面我们提到的一个数的各位数字之和是指把它的各位数字相加,如果得到的数字之和不是一位数,就把所得的数字再相加,直到成为一位数为止。我们可以得到下面的命题: 一个数的数字和等于这个数被9除的余数。 下面以四位数为例来说明这个命题。 设四位数为,则 = 1000a+100b+10c+d = 999a+99b+9c+(a+b+c+d) = 9(111a+11b+c)+(a+b+c+d) 显然,a+b+c+d是四位数被9除的余数。 对於n位数,也可以仿此法予以证明。 关於完全平方数的数字和有下面的性质: 性质9:完全平方数的数字之和只能是0,1,4,7,9。 证明 因为一个整数被9除只能是9k,9k±1, 9k±2, 9k±3, 9k±4这几种形式,而 (9k)=9(9)+0 (9k±1)=9(9±2k)+1 (9k±2)=9(9±4k)+4 (9k±3)=9(9±6k)+9 (9k±4)=9(9±8k+1)+7 除了以上几条性质以外,还有下列重要性质: 性质10:为完全平方数的充要条件是b为完全平方数。 证明 充分性:设b为平方数,则 ==(ac) 必要性:若为完全平方数,=,则 性质11:如果质数p能整除a,但p的平方不能整除a,则a不是完全平方数。 证明 由题设可知,a有质因数p,但无因数,可知a分解成标准式时,p的次方为1,而完全平方数分解成标准式时,各质因数的次方均为偶数,可见a不是完全平方数。 性质12:在两个相邻的整数的平方数之间的所有整数都不是完全平方数,即若 n^2 < k^2 < (n+1)^2 则k一定不是完全平方数。 性质13:一个正整数n是完全平方数的充分必要条件是n有奇数个因数(包括1和n本身)。 (二)重要结论 1.个位数是2,3,7,8的整数一定不是完全平方数; 2.个位数和十位数都是奇数的整数一定不是完全平方数; 3.个位数是6,十位数是偶数的整数一定不是完全平方数; 4.形如3n+2型的整数一定不是完全平方数; 5.形如4n+2和4n+3型的整数一定不是完全平方数; 6.形如5n±2型的整数一定不是完全平方数; 7.形如8n+2, 8n+3, 8n+5, 8n+6,8n+7型的整数一定不是完全平方数; 8.数字和是2,3,5,6,8的整数一定不是完全平方数。
文章TAG:
什么 平方 平方数 是什么 什么是平方数
相关文章推荐
- 卧室和客厅哪个适合贴壁纸,哪个房间更适合贴壁纸:卧室还是客厅?
- 钢板和铸铝的暖气片哪个好,如何选择暖气片材质?钢板和铸铝各有优劣
- 南宁哪里有折叠沙发床,南宁有卖折叠沙发床的地方吗?
- 阜阳万帝木门怎么样,阜阳万帝木门的质量表现如何?
- 史密斯EQ400T电热水器怎么样,史密斯EQ400T热水器的性能如何?
- 放射性会怎么样,放射性的影响是什么?
- 防弹玻璃的台面怎么样,如何制作承重能力较强的防弹玻璃台面
- 电视冰箱洗衣机哪个牌子好,哪个品牌的家电更可靠:电视、冰箱、洗衣机?
- 非晶变压器怎么样,非晶态变压器的性能特点是怎样的?
- 方形智能马桶盖怎么样,方形智能马桶盖的使用效果如何?
- 中原百姓广场的地址在哪里,原百姓广场位于哪个地方?
- 电视声音dk模式哪里调,电视声音怎么调DK模式?
- 房改房在房产证哪个地方有体现,房改产权实现,房产证明细体现
- 飞利浦pt786和pt720哪个好,飞利浦pt786和pt720各有优劣,你该如何选择?
- 华神地板怎么样,华神地板质量如何