1,什么是涡流损耗

有铁芯的电感性用电器中,在工作时,由于电磁感应,在铁芯中要产生感生电流,这个感生电流就象漩涡一样,在铁芯内部流动,使铁芯发热,造成了电能的损耗,这个损耗就叫涡流损耗。
涡流损耗 如同电流流过电阻一样,铁芯中的涡流要消耗能量而使铁芯发热,这种能量损耗称为涡流损耗。

什么是涡流损耗

2,涡流损耗怎样产生

涡流损耗导体在非均匀磁场中移动或处在随时间变化的磁场中时,在导体内会有感应电流的产生,会造成能量的损耗,称为涡流损耗。在导体内部形成的一圈圈闭合的电流线,称为涡流,也称为傅科电流。?涡流损耗大小的影响因素涡流损耗的大小与磁场的变化方式、导体的运动、导体的几何形状、导体的磁导率和电导率等因素有关。由电磁轴承支承的转子在高速旋转时,除由于空气摩擦产生的损耗外,转子内还将产生相当大的铁损耗(涡流损耗和磁滞损耗),一般涡流损耗远大于磁滞损耗。通常采用叠片、烧结或缠绕结构的转子来减小涡流损耗。涡流损耗与磁滞损耗的区别1、原理的不同(1)涡流损耗:导体中有交变磁场时,根据电磁感应定律,会在导体中产生感应电流,该电流在导体中流动产生焦耳热,使导体发热,造成损耗,称为涡流损耗。(2)磁滞损耗:由于导磁体的磁滞回线的面积不为零产生的。磁滞回线包围的面积越大,磁滞损耗越大。磁滞损耗会导致导磁体发热。涡流损耗与磁滞损耗均为铁损,涡流损耗和磁滞损耗仅在交变磁场中发生。2、表现的不同涡流损耗:磁场在导体中产生涡流,电流(涡流)通过有电阻的导体产生热能。磁滞损耗:铁芯内部磁畴高速旋转过程中产生摩擦引起,最终体现为热能。

涡流损耗怎样产生

3,变压器的涡流损耗是什么

呵呵,楼上的歪解。涡流损耗实际是因为导线所处的位置有轴向漏磁通存在,导线垂直于交变的轴向漏磁而感应出来的再导线内部流通的涡流电流影响导线中涡流的因素有最大漏磁密度、导线厚度、电流密度等,导线越厚,涡流越大。换位导线、复合导线的绝缘破损,就相当于增加了导线的厚度,导致涡流增大。其实除了涡流之外,导线破损还可能导致环流的增大。
涡流损耗是变压器导体在非均匀磁场中移动或处在随时间变化的磁场中时,导体内的感生的电流导致的能量损耗,叫做涡流损耗。在导体内部形成的一圈圈闭合的电流线,称为涡流(又称傅科电流)。  涡流损耗的大小与磁场的变化方式、导体的运动、导体的几何形状、导体的磁导率和电导率等因素有关。涡流损耗的计算需根据导体中的电磁场的方程式,结合具体问题的上述诸因素进行。
安培定则:右手握空心状,拇指指向磁场方向,四指指向方向为电流,只要有磁场产生,这个电流必定产生,铁芯是导体,片与片虽有绝缘,但每一片仍会沿铁芯的表面形成一个回路,象个漩涡,所以叫涡流. 至于线圈涡流,因漏磁产生,原理一样,只有大型变压器才计算,不敢妄论.

变压器的涡流损耗是什么

4,什么是涡流损耗

电磁感应作用在导体内部感生的电流。又称为傅科电流。导体在磁场中运动,或者导体静止但有着随时间变化的磁场,或者两种情况同时出现,都可以造成磁力线与导体的相对切割。按照电磁感应定律,在导体中就产生感应电动势,从而驱动电流。这样引起的电流在导体中的分布随着导体的表面形状和磁通的分布而不同,其路径往往有如水中的漩涡,因此称为涡流。导体在非均匀磁场中移动或处在随时间变化的磁场中时,因涡流而导致能量损耗称为涡流损耗。涡流损耗的大小与磁场的变化方式 、导 体的运动 、导体的几何形状、导体的磁导率和电导率等因素有关。涡流损耗的计算需根据导体中的电磁场的方程式,结合具体问题的上述诸因素进行。 如果我们仔细观察发电机、电动机、和变压器,就可以看到,它们的铁心都不是整块金属,而是用许多薄的硅钢片叠合而成。为什么这样呢? 原来,把块装金属置于随时间变化的磁场中或让它在磁场中运动时,金属块内将产生感应电流。这种电流在金属块内自成闭合回路,很像水的漩涡,因此叫做涡电流简称涡流。整块金属的电阻很小,所以涡流常常很强。如变压器的铁心,当交变电流穿过导线,时穿过铁心的磁通量不断随时间变化,它在副边产生感应电动势,同时也在铁心中产生感应电动势,从而产生涡流。这些涡流使铁心大量发热,浪费大量的电能,效率很低。但涡流也是可以利用的,在感应加热装置中,利用涡流可对金属工件进行热处理。 大块的导体在磁场中运动或处在变化的磁场中,都要产生感应电动势,形成涡流,引起较大的涡流损耗。为减少涡流损耗,交流电机、电器中广泛采用表面涂有薄层绝缘漆或绝缘的氧化物的薄硅钢片叠压制成的铁心,这样涡流被限制在狭窄的薄片之内,磁通穿过薄片的狭窄截面时,这些回路中的净电动势较小,回路的长度较大,回路的电阻很大,涡流大为减弱。再由于这种薄片材料的电阻率大(硅钢的涡流损失只有只有普通钢的1/5至1/4),从而使涡流损失大大降低。 另一方面,利用涡流作用可以做成一些感应加热的设备,或用以减少运动部件振荡的阻尼器件

5,什么叫做铜损耗 什么叫做铁损耗 什么叫做涡流损耗详细说明 搜

绕制变压器需要用大量的铜线,这些铜导线存在着电阻,电流流过时这电阻会消耗一定的功率,这部分损耗往往变成热量而消耗,我们称这种损耗为“铜损(耗)”。  变压器空载时,由于原线圈的电阻一般都很小,空载电流与电压之间的相位差很大(接近90°),因此铜损可忽略,即空载时的损耗基本上等于铁损。变压器工作时,铜损主要决定于负载电流的大小,而负载电流的大小不仅与负载阻抗的大小有关而且与负载阻抗的性质有关,因此铜损的大小实际上是由负载的大小与功率因数决定。  铁损(Iron Loss),也叫作铁损耗。铁损包括磁性材料的磁滞损耗和涡流损耗以及剩余损耗,单位为W/kg(瓦/千克)。磁滞损耗是指铁磁材料作为磁介质,在一定励磁磁场下产生的固有损耗(在电能转换磁能过程中所产生的损耗);涡流损耗是指磁通发生交变时,铁芯产生感应电动势进而产生感应电流,感应电流呈旋涡状,称之为涡流;感应电流在铁芯电阻上产生的损耗就是涡流损耗;剩余损耗是指除磁滞损耗和涡流损耗以外的损耗,由于所占比重较小,也可忽略不计。  导体在非均匀磁场中移动或处在随时间变化的磁场中时,导体内的感生的电流导致的能量损耗,叫做涡流损耗。在导体内部形成的一圈圈闭合的电流线,称为涡流(又称傅科电流)。  涡流损耗的大小与磁场的变化方式、导体的运动、导体的几何形状、导体的磁导率和电导率等因素有关。涡流损耗的计算需根据导体中的电磁场的方程式,结合具体问题的上述诸因素进行。
你好!铜损就是电流通过铜线导体的电阻的功率损耗,铁损是电流产生磁场通过硅钢片的磁阻消耗电能的损耗,涡流损耗就是磁路循环产生环流而发热消耗电能的损耗。希望对你有所帮助,望采纳。

6,什么是涡流损耗

涡流 eddy current 电磁感应作用在导体内部感生的电流。又称为傅科电流。导体在磁场中运动,或者导体静止但有着随时间变化的磁场,或者两种情况同时出现,都可以造成磁力线与导体的相对切割。按照电磁感应定律,在导体中就产生感应电动势,从而驱动电流。这样引起的电流在导体中的分布随着导体的表面形状和磁通的分布而不同,其路径往往有如水中的漩涡,因此称为涡流。导体在非均匀磁场中移动或处在随时间变化的磁场中时,因涡流而导致能量损耗称为涡流损耗。涡流损耗的大小与磁场的变化方式 、导 体的运动 、导体的几何形状、导体的磁导率和电导率等因素有关。涡流损耗的计算需根据导体中的电磁场的方程式,结合具体问题的上述诸因素进行。 如果我们仔细观察发电机、电动机、和变压器,就可以看到,它们的铁心都不是整块金属,而是用许多薄的硅钢片叠合而成。为什么这样呢? 原来,把块装金属置于随时间变化的磁场中或让它在磁场中运动时,金属块内将产生感应电流。这种电流在金属块内自成闭合回路,很像水的漩涡,因此叫做涡电流简称涡流。整块金属的电阻很小,所以涡流常常很强。如变压器的铁心,当交变电流穿过导线,时穿过铁心的磁通量不断随时间变化,它在副边产生感应电动势,同时也在铁心中产生感应电动势,从而产生涡流。这些涡流使铁心大量发热,浪费大量的电能,效率很低。但涡流也是可以利用的,在感应加热装置中,利用涡流可对金属工件进行热处理。 大块的导体在磁场中运动或处在变化的磁场中,都要产生感应电动势,形成涡流,引起较大的涡流损耗。为减少涡流损耗,交流电机、电器中广泛采用表面涂有薄层绝缘漆或绝缘的氧化物的薄硅钢片叠压制成的铁心,这样涡流被限制在狭窄的薄片之内,磁通穿过薄片的狭窄截面时,这些回路中的净电动势较小,回路的长度较大,回路的电阻很大,涡流大为减弱。再由于这种薄片材料的电阻率大(硅钢的涡流损失只有只有普通钢的1/5至1/4),从而使涡流损失大大降低。 另一方面,利用涡流作用可以做成一些感应加热的设备,或用以减少运动部件振荡的阻尼器件等。

7,涡流效应的涡流损耗

开关电源变压器的涡流损耗在开关电源的总损耗中所占的比例很大,如何降低开关电源变压器的涡流损耗,是开关电源变压器或开关电源设计的一个重要内容。变压器产生涡流损耗的原理是比较简单的,由于变压器铁芯除了是一种很好的导磁材料以外,同时它也属于一种导电体;当交变磁力线从导电体中穿过时,导电体中就会产生感应电动势,在感应电动势的作用下,在导电体中就会产生回路电流使导体发热;这种由于交变磁力线穿过导体,并在导体中产生感应电动势和回路电流的现象,人们把它称为涡流,因为它产生的回路电流没有作为能量向外输出,而是损耗在自身的导体之中。单激式开关电源变压器的涡流损耗计算与双激式开关电源变压器的涡流损耗计算,在方法上是有区别的。但用于计算单激式开关电源变压器涡流损耗的方法,只需稍微变换,就可以用于对双激式开关变压器的涡流损耗进行计算。例如,把双激式开关电源变压器的双极性输入电压,分别看成是两次极性不同的单极性输入电压,这样就可以实现对于双激式开关电源变压器涡流损耗的计算。因此,下面仅对单激式开关变压器的涡流损耗计算进行详细分析。当有一个直流脉冲电压加到变压器初级线圈的两端时,在变压器初级线圈中就就有励磁电流通过,并在变压器铁芯中产生磁场强度H和磁通密度B,两者由下式决定:传统的变压器铁芯为了降低涡流损耗,一般都把变压器铁芯设计成由许多薄铁片,简称为铁芯片,互相重叠在一起组成,并且铁芯片之间互相绝缘。图2-18表示变压器铁芯或变压器铁芯中的一铁芯片。我们可以把这些铁芯片看成是由非常多的“线圈”(如图中虚线所示)紧密结合在一起组成;当交变磁力线从这些“线圈”中垂直穿过时,在这些“线圈”中就会产生感应电动势和感应电流,由于这些“线圈”存在电阻,因此这些“线圈”要损耗电磁能量。在直流脉冲作用期间,涡流的机理与正激电压输出的机理是基本相同的。涡流产生磁场的方向与励磁电流产生磁场的方向正好相反,在铁芯片的中心处去磁力最强,在边缘去磁力为零。因此,在铁芯片中磁通密度分布是不均匀的,即最外层磁场强度最大,中心处最小。如果涡流退磁作用很强,则磁通密度的最大值可能远远超过其平均值,该数值由已知脉冲的幅度和宽度来决定。沿铁芯片截面的磁场分布,可以用麦克斯韦的方程式来求得;麦克斯韦的微分方程式为:上式中 为变压器铁芯的平均导磁率, 为铁芯的电阻率,负号表示涡流产生的磁场方向与励磁电流产生的磁场方向相反。rot E和rot Hx分别表示电场和磁场的旋度,即涡旋电场和涡旋磁场的强度。Hx、Hy、Hz分别磁场强度H的三个分量;Bx、By、Bz分别磁感应强度B的三个分量;Ex、Ey、Ez分别电场强度H的三个分量。由于单激式开关电源变压器铁芯的磁滞回线面积很小,其磁化曲线基本上可以看成一根直线,导磁率 也可以看成是一个常数;因此,这里使用平均导磁率 来取代意义广泛的导磁率 。当x = 0时,正好位于铁芯片的中心,此处的磁场强度最小,即此点的导数值等于0,由此求得积分常数c1= 0。由于在变压器铁芯片内,截面磁场强度的平均值Ha,在任一时间内都必须等于电磁感应所要求的值,即满足(2-45)式的要求,因此对应图2-18对(2-58)式求平均值得:图2-19-a和图2-19-b分别是由(2-61)式给出的,铁芯片中磁场强度按水平方向分布的函数H(x)和按时间分布的函数H(t)曲线图。从图2-19-a中可以看出,由于涡流产生反磁化作用的缘故,在铁芯或铁芯片中心磁场强度最低边缘磁场强度最高。在图2-19-b中,随着时间线性增长部分是变压器初级线圈励磁电流产生的磁场;Hb是为了补偿涡流产生的去磁场,而由变压器初级线圈另外提供电流所产生的磁场。从图2-19-b可以看出,涡流损耗对变压器铁芯中磁场强度(平均值)的影响,与变压器正激输出时,次级线圈中电流产生的磁场对变压器铁芯磁场的影响,基本是一样的。值得注意的是,如果用同样方法对y轴方向进行分析,也可以得到同样的结果。根据(2-62)式可知,铁芯或铁芯片表面的磁场由两个部分组成:(1)平均磁场,它随时间线性增长,由线圈中固定的电动势感应所产生;(2)常数部分,它不随时间变化,由补偿涡流的产生的去磁场所形成。图2-20-a就是根据(2-67)、(2-68)式画出的开关变压器受涡流影响时,输入端磁化过程的等效电路图。图2-20-a中,Rb为涡流损耗等效电阻,N为变压器初级线圈。由此可以看处,由于受涡流损耗的影响,变压器铁芯被磁化时,相当于一个涡流损耗等效电阻Rb与变压器初级线圈N并联。图2-20-b是更形象地把涡流损耗等效成一个变压器次级线圈N2给损耗电阻Rb2提供能量输出,流过变压器次级线圈N2的电流 ,可以通过电磁感应在变压器初级线圈N1中产生电流 。根据(2-66)式和图2-20,可求得变压器的涡流损耗为:由此,我们可以看出:变压器铁芯的涡流损耗,与磁感强度增量和铁芯的体积成正比,与铁芯片厚度的平方成正比,与电阻率及脉冲宽度的平方成反比。值得注意的是,上面各式中代表面积S的属性,它既可以代表某一铁芯片的截面积,也可以代表变压器铁芯的总面积,当S变压器铁芯的总面积时,相当于上面结果是很多单个铁芯片涡流损耗的代数和。同理,以上各式中代表铁芯片厚度的 ,既可以代表某一铁芯片的厚度,也可以代表变压器铁芯的总厚度,因为铁芯片的厚度 的取值是任意的。但是,在变压器铁芯总面积相等的情况下,由一块铁芯片或多块相同厚度的铁芯片组成的变压器铁芯,其涡流损耗是不相同的。例如,在变压器铁芯总面积相等的情况下,由一块铁芯片组成的变压器铁芯的涡流损耗,是由两块铁芯片组成的变压器铁芯涡流损耗的4倍;如果两者铁芯片的数目的比值为3倍,那么涡流损耗的比值就是9倍。由此可知,涡流损耗是按n2递减的,其中n为变压器铁芯芯片的个数。实际用(2-69)式来计算开关变压器的涡流损耗还是有一定局限性的,因为,在对(2-69)式的推导过程中并没有考虑两块铁芯片之间涡流磁场的互相影响,从原理上来说变压器铁芯中间的铁芯片与边缘的铁芯片之间涡流磁场互相影响程度是不一样的;并且铁芯片与铁芯片之间不可能完全绝缘。另外,大多数开关变压器使用的铁芯材料基本上都是铁氧体导磁材料,这些以铁氧体为材料的变压器铁芯是按陶瓷的生产工艺,先把铁磁混合材料冲压成型,然后加高温烧结而成,因此它是一个整体,或为了安装方便把它分成两个部分组合而成。如果把以铁氧体变压器铁芯的形状看成是一个圆柱体,那么(2-50)、(2-51)的麦克斯韦一维方程式就可以看成是电磁场能量是由圆柱体中心向周围传播和散发的;这样圆柱形变压器铁芯就相当于由不同内外径,厚度变量为的多个圆筒体组合而成。或者,把整个铁氧体变压器铁芯,看成为由单个厚度为d/2的圆柱体组成,这里d为圆柱体的直径。图2-21就是用来求铁氧体圆柱体变压器铁芯内某截面磁场分布的原理图,图中虚线表示交变磁场在变压器铁芯内部感应产生涡流。我们用同样的方法,从(2-59)开始对表示磁场分布的(2-58)式进行积分求平均值,然后求出积分常数c2,即可以求得圆柱体铁芯内的磁场分布式:上面(2-70)式是表示圆柱体铁芯截面沿x轴方向的磁场分布图。其实磁场分布在整个铁芯截面的xy平面内都是以中心对称的。这样圆柱形变压器铁芯中的磁场强度在xy平面的分布函数H(x,y)曲面,就相当于把图2-19-a的函数曲线,以中心为圆心旋转一周而得到的新图形。图2-22-a和图2-22-b是圆柱形铁芯中磁场强度按水平分布的函数H(x,y)曲面图和按时间分布的函数H(t)曲线图。根据上面分析,以同样方法我们可以求出圆柱体变压器铁芯的涡流损耗为:由此我们对园柱体变压器铁芯同样可以得出结论:圆柱体变压器铁芯的涡流损耗,与磁感强度增量和铁芯的体积成正比,与铁芯直径的平方成正比,与电阻率及脉冲宽度的平方成反比。或者,圆柱体变压器铁芯的涡流损耗,与磁感强度增量以及铁芯直径的四次方成正比,与电阻率及脉冲宽度的平方成反比。(2-71)式与(2-69)式在原理上没有本质上的区别,因此,图2-20的等效电路对于(2-71)式同样有效。上面对涡流工作原理的分析,虽然看起来并不是很复杂,但要精确计算涡流损耗的能量是非常困难的。因为很难精确测量出变压器铁芯的损耗电阻,特别是,大多数开关变压器使用的铁芯材料,基本上都是铁氧体导磁材料;这些铁氧体变压器铁芯是由多种铁磁金属材料与非金属材料混合在一起,然后按陶瓷的生产工艺,把铁磁混合材料冲压成型,最后加高温烧结而成的。由于铁氧体属于金属氧化物,大部分金属氧化物都具有半导体材料的共同性质,就是电阻率会随温度变化,并且变化率很大。热敏电阻就是根据这些性质制造出来的,温度每升高一倍,电阻率就会下降(或上升)好几倍,甚至几百倍。大多数热敏电阻的材料也属于金属氧化物,因此,铁氧体也具有热敏电阻的性质。铁氧体变压器铁芯在常温下,虽然电阻率很大,但当温度升高时,电阻率会急速下降;相当于图2-20-a中的Rb涡流等效电阻变小,流过Rb的电流增加;当温度升高到某个极限值时,变压器初级线圈的有效电感量几乎下降到0,相当于导磁率也下降到0,或变压器初、次级线圈被短路,此时的温度称为居里温度,用Tc表示。因此,铁氧体的电阻率和导磁率都是不稳定的,铁氧体开关变压器的工作温度不能很高,一般不要超过。图2-23是日本TDK公司高导磁率材料H5C4系列磁芯初始导磁率 随温度变化的曲线图。顺便说明,图2-23中的初始导磁率 一般是用磁环作为样品测试得到的,测试信号的频率一般比较低,仅为10kHz,并且测试时一般都选用最大导磁率作为结果;因此,实际应用中的开关变压器磁芯的导磁率并没有这么高。

文章TAG:涡流损耗  什么  损耗  涡流损耗  
下一篇