1,响应面的介绍

响应面是指响应变量η与一组输入变量(ζ1,ζ2,ζ3...ζk)之间的函数关系式:η=f(ζ1,ζ2,ζ3...ζk)。依据响应面法建立的双螺杆挤压机的统计模型可用于挤压过程的控制和挤压结果的预测。

响应面的介绍

2,什么是响应面分析法

响应面分析法是通过对响应面等值线的分析寻求最优工艺参数,采用多元二次回归方程来拟合因素与响应值之间函数关系的一种统计方法。 响应面分析法是通过对响应面等值线的分析寻求最优工艺参数,采用多元二次回归方程来拟合因素与响应值之间函数关系的一种统计方法

什么是响应面分析法

3,响应面法的适用范围

当真实的极限状态函数非线性程度不大时,线性响应面具有较高的近似精度。二次不含交叉项的响应面法(quadratic polynomial without cross terms) 基本思想: 与线性响应面法类似,只不过它选取二次不含交叉项的多项式来近似隐式功能函数。

响应面法的适用范围

4,响应面说明什么

响应面法(response surface methodology,记为RSM)最早是由数学家Box和Wilson于1951年提出来的。就是通过一系列确定性的“试验”拟合一个响应面来模拟真实极限状态曲面。其基本思想是假设一个包括一些未知参量的极限状态函数与基本变量之间的解析表达式代替实际的不能明确表达的结构极限状态函数。 响应面方法是一项统计学的综合试验技术,用于处理几个变量对一个体系或结构的作用问题,也就是体系或结构的输入(变量值)与输出(响应)的转换关系问题。现用两个变量来说明:结构响应Z与变量x1,x2具有未知的、不能明确表达的函数关系Z=g(x1,x2)。要得到“真实”的函数通常需要大量的模拟,而响应面法则是用有限的试验来回归拟合一个关系Z= g(x1,x2),并以此来代替真实曲面Z=g(x1,x2),将功能函数表示成基本随机变量的显示函数,应用于可靠度分析中。 响应面方法实际上源于一种试验设计方法,试验设计方法是用来研究设计参数对模型设计状况影响的一种取样策略,决定了构造近似模型所需样本点的个数和这些点的空间分布情况。目前广泛应用于计算机仿真试验设计的主要方法是拉丁超立方体抽样和均匀设计,这两种试验设计能应用于多种多样的模型,且对模型的变化具有稳健性。

5,什么叫响应面设计法

原发布者:20long20响应面设计与实验数据处理响应面优化法?响应面优化法(相应曲面法;ResponseSurfaceMethodology,RSM),是20世纪90年代初西方所兴起的一种实验统计方法。响应曲面等值线的分析寻求最优工艺参数,将复杂的未知的函数关系,在小区域内用简单的一次或二次多项式模型来拟合因素与响应值之间函数关系的一种统计方法。适宜于解决非线性数据处理的相关问题。?囊括了试验设计、建模、检验模型适合性、寻求最佳组合条件等众多实验和统计技术;通过对过程的回归拟合和响应曲面与等高线的绘制、可方便地求出响应于各因素水平的响应值。在各因素水平的响应值的基础上,找出预测的响应最优值以及相应的实验条件。?前提:设计的实验点应包括最佳的实验条件,如果实验点的选取不当,使用响应面优化法是不能得到很好的优化结果的。因而,在使用响应面优化法之前,应当确立合理的实验的各因素与水平。?响应面即回归的正交试验设计,考虑了实验随机误差;可以在因素的试验范围内选择适当的试验点,用较少的试验建立一个精度高,统计性质好的回归方程,并能解决试验优化问题。?所获得的预测模型是连续的,与正交实验相比,其优势是:在实验条件寻优过程中,可以连续的对实验的各个水平进行分析,而正交实验只能对一个个孤立的试验点进行分析。?正交试验设计所得到的优方案只能限制在已定的水平上,而不是一定试验范围内的最优方案;回归分析可以对结果进行预测和优
试验设计与优化方法,都未能给出直观的图形,因而也不能凭直觉观察其最优化点,虽然能找出最优值,但难以直观地判别优化区域.为此响应面分析法(也称响应曲面法)应运而生.响应面分析也是一种最优化方法,它是将体系的响应(如萃取化学中的萃取率)作为一个或多个因素(如萃取剂浓度、酸度等)的函数,运用图形技术将这种函数关系显示出来,以供我们凭借直觉的观察来选择试验设计中的最优化条件.显然,要构造这样的响应面并进行分析以确定最优条件或寻找最优区域,首先必须通过大量的量测试验数据建立一个合适的数学模型(建模),然后再用此数学模型作图.建模最常用和最有效的方法之一就是多元线性回归方法.对于非线性体系可作适当处理化为线性形式.设有m个因素影响指标取值,通过次量测试验,得到n组试验数据().假设指标与因素之间的关系可用线性模型表示,则有应用均匀设计一节中的方法将上式写成矩阵式或简记为式中表示第次试验中第个因素的水平值;为建立模型时待估计的第个参数;为第次试验的量测响应(指标)值;为第次量测时的误差.应用最小二乘法即可求出模型参数矩阵b如下将b阵代入原假设的回归方程,就可得到响应关于各因素水平的数学模型,进而可以图形方式绘出响应与因素的关系图.模型中如果只有一个因素(或自变量),响应(曲)面是二维空间中的一条曲线;当有二个因素时,响应面是三维空间中的曲面.下面简要讨论二因素响应面分析的大致过程.在化学量测实践中,一般不考虑三因素及三因素以上间的交互作用,有理由设二因素响应(曲)面的数学模型为二次多项式模型,可表示如下:通过n次量测试验(试验次数应大于参数个数,一般认为至少应是它的3倍),以最小二乘法估计模型各参数,从而建立模型;求出模型后,以两因素水平为x坐标和y坐标,以相应的由上式计算的响应为z坐标作出三维空间的曲面(这就是2因素响应曲面).应当指出,上述求出的模型只是最小二乘解,不一定与实际体系相符,也即,计算值与试验值之间的差异不一定符合要求.因此,求出系数的最小二乘估计后,应进行检验.一个简单实用的方法就是以响应的计算值与试验值之间的相关系数是否接近于1或观察其相关图是否所有的点都基本接近直线进行判别.如果以表示响应试验值,为计算值,则两者的相关系数r定义为其中对于二因素以上的试验,要在三维以上的抽象空间才能表示,一般先进行主成分分析进行降维后,再在三维或二维空间中加以描述.
响应面是指响应变量η与一组输入变量(ζ1,ζ2,ζ3...ζk)之间的函数关系式:η=f(ζ1,ζ2,ζ3...ζk)。依据响应面法建立的双螺杆挤压机的统计模型可用于挤压过程的控制和挤压结果的预测。  狭义上说,响应曲面设计方法(Response Surface Methodology,RSM)是利用合理的试验设计方法并通过实验得到一定数据,采用多元二次回归方程来拟合因素与响应值之间的函数关系,通过对回归方程的分析来寻求最优工艺参数,解决多变量问题的一种统计方法。

文章TAG:响应  面的  介绍  响应面  
下一篇