本文目录一览

1,太阳能电池的原理

太阳能电池的原理太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由p区流向n区,电子由n区流向p区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。太阳能绿色能源太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。
太阳能电池的发电原理: 当太阳光照在太阳能电池表面,部分光子被电池板上的硅吸收;光子的能量就传递给了硅原子,使原子中的电子发生越迁,变成自由电子,自由电子不断在p-n结两侧集聚,就形成了电位差。在p-n结两侧接通外部电路后,在这个电位差的作用下,就会在外部电路中产生电流,当电流通过负载时,就可以输出一定的电功率。实质就是光子能转换为电能。 太阳能电池其实就是采用能将光能转换成电能的材料制作的一种电气元件。能进行光电转换的材料有许多,常用的有单晶硅、多晶硅、非晶硅、砷化镓、硒铟铜等。

太阳能电池的原理

2,太阳能的原理是什么

  1、太阳能电池是利用半导体材料的光电效应,将太阳能转换成电能的装置。   2、光生伏特效应的基本过程:假设光线照射在太阳能电池上并且光在界面层被接纳,具有足够能量的光子可以在P型硅和N型硅中将电子从共价键中激起,致使产生电子-空穴对。   3、界面层临近的电子和空穴在复合之前,将经由空间电荷的电场作用被相互分别。电子向带正电的N区而空穴向带负电的P区运动。经由界面层的电荷分别,将在P区和N区之间将形成一个向外的可测试的电压。   4、此时可在硅片的两边加上电极并接入电压表。对晶体硅太阳能电池来说,开路电压的典型数值为0.5~0.6V。经由光照在界面层产生的电子-空穴对越多,电流越大。

太阳能的原理是什么

3,太阳能的原理

有好多种材料,市占率最多的是单晶硅、多晶硅太阳电池,国内的厂家也基本是这个技术。此外还有各种薄膜电池,使用材料如非晶硅、CdTe、CIGS,效率较低,但成本也较低。效率最高的是聚光型太阳电池,材料为砷化镓。另外也有一些还处在实验室阶段的、成本较高效率较低的,如染料敏化电池,有机太阳能电池。把太阳能转化为电能最基本原理就是:太阳光有能量,每个足够大能量的光子能在电池上产生电子-空穴对,即载流子,而电池的结构有内建电场可以收集这些载流子产生电能。电压方面,每个种类的电池不一样。主要由材料的禁带宽度决定。个人很难做,对设备的要求较高。
太阳能电池板的材料有很多种, 多晶硅,单晶硅,非晶硅等常用的.通过光生伏打效应,将光能转成电能, 具体请参阅如下链接内的介绍原理.每节太阳能电池单体的电压为0.5V, 个人不太方便做.
朋友,太阳能的原理有热水器有电池等方面的啊,我就以热水器跟你说啊。你看看。太阳能热水器由集热器、保温热水葙、补水葙、上下循环管和支架等组成。集热器有真空管式、铜铝复合式及闷晒式等几种,当水在集热器中受到太阳光辐射加热时,集热器内水温升高,集热器与保温热水箱中的水温产生了比重差,形成系统的热虹吸压头,使热水由上循环管进入水箱的上部,同时水箱底部的冷水由下循环管流入集热器,而形成系统内水的自然循环,使得储水箱里的水温不断升高。一般而言,在晴天,日平均有效太阳能辐射得到热 量为16000kj/㎡左右,即每平方米集热面积,可加热60kg水,水温升高35℃左右。

太阳能的原理

4,太阳能的原理

太阳能是由太阳内部氢原子发生氢氦聚变释放出巨大核能而产生的,来自太阳的辐射能量。人类所需能量的绝大部分都直接或间接地来自太阳。植物通过光合作用释放氧气、吸收二氧化碳,并把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代演变形成的一次能源。地球本身蕴藏的能量通常指与地球内部的热能有关的能源和与原子核反应有关的能源。扩展资料:太阳能的优点:1、普遍:太阳光普照大地,没有地域的限制,无论陆地或海洋,无论高山或岛屿,都处处皆有,可直接开发和利用,便于采集,且无须开采和运输。2、无害:开发利用太阳能不会污染环境,它是最清洁能源之一,在环境污染越来越严重的今天,这一点是极其宝贵的。3、巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总量属现今世界上可以开发的最大能源。4、长久:根据太阳产生的核能速率估算,氢的贮量足够维持上百亿年,而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是用之不竭的。参考资料来源:百度百科——太阳能

5,太阳能发电原理

太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为220V或110V,还需要配置逆变器。各部分的作用为: 1、太阳能电池板 太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳能的辐射能力转化为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 太阳能电池板的工作原理:半导体p-n结的光生伏打效应。简而言之,就是当物体受到光照时,物体内部的电荷分部状态发生变化而产生的电动势和电流的一种效应,当太阳光或者其他光照射到半导体p-n结时,就会在p-n结的两边出现电压。 2、太阳能控制器 太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附件功能如光控开关、时控开关都应当是控制器的可选项。 3、蓄电池 一般是铅酸蓄电池,小型系统中也可用其他的种类,比如镍镉电池等,其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 4、逆变器 在很多场合,都需要提供220VAC、110VAC的交流电源。由于太阳能的直接输出一般都是12VDC、24VDC、48VDC,为能向220VDC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,由此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-AC逆变器如将24VDC的电能转换成5VDC的电能(注意,不是简单的降压)。
我留在恒宽的那本书上面介绍的非常详细,单是发电原理的 话,你想要了解什么都有的!!不过问下刘洋书在哪里了!
http://baike.baidu.com/view/357358.html?wtp=tt
这是半导体物理中涉及的问题。 物质根据导电性可以分为:导体,半导体和绝缘体。 从物质内部结构来讲,物质的导电性是由电子运动引起的。 如果物质内部所有能级都被电子所填充,那么电子就没有运动空间,也就不会导电,也就是绝缘体。 如果物质内部有一部分能级是空的,而另一部分被电子所填充,那么,在没有外界影响的状态下,电子会处于基态,也就是能量最低的状态,与最低能级相对应,这时高能级就是空的,在有外界能量输入时,低能级上的电子吸收能量跃迁到高能级,就发生了电子的运动,具有了导电性。 太阳能电池是由光敏半导体材料制成的,多数好象使用硅的化合物。 真正的太阳能电池与我们印象中的是不同的。一般人认为他应该是一个很光华的表面,但实际上,为了使吸收光照射的面积增大,硅板的表面需要通过蚀刻的方法在表面做出许多毛尖,使表面变的粗糙,因为光的利用率比较

6,太阳能工作原理

太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。 (1) 光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。 (2) 光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的 电池板原料:玻璃,EVA,电池片、铝合金壳、包锡铜片、不锈钢支架、蓄电池等 太阳能热水器把太阳光能转化为热能,将水从低温度加热到高温度,以满足人们在生活、生产中的热水使用。太阳能热水器是由集热管、储水箱及相关附件组成,把太阳能转换成热能主要依靠集热管。集热器受阳光照射面温度高,集热管背阳面温度低,而管内水便产生温差反应,利用热水上浮冷水下沉的原理,使水产生微循环而达到所需热水。太阳能电池板和太阳能热水器工作原理相差较远,唯一相同的是都吸收太阳能
太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结电场的作用下,空穴由n区流向p区,电子由p区流向n区,接通电路后就形成电流。这就是光电效应太阳能电池的工作原理。 一、太阳能发电方式太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。 (1) 光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样.太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍.一座1000mw的太阳能热电站需要投资20~25亿美元,平均1kw的投资为2000~2500美元。因此,目前只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。 (2) 光—电直接转换方式该方式是利用光电效应,将太阳辐射能直接转换成电能,光—电转换的基本装置就是太阳能电池。太阳能电池是一种由于光生伏特效应而将太阳光能直接转化为电能的器件,是一个半导体光电二极管,当太阳光照到光电二极管上时,光电二极管就会把太阳的光能变成电能,产生电流。当许多个电池串联或并联起来就可以成为有比较大的输出功率的太阳能电池方阵了。太阳能电池是一种大有前途的新型电源,具有永久性、清洁性和灵活性三大优点.太阳能电池寿命长,只要太阳存在,太阳能电池就可以一次投资而长期使用;与火力发电、核能发电相比,太阳能电池不会引起环境污染;太阳能电池可以大中小并举,大到百万千瓦的中型电站,小到只供一户用的太阳能电池组,这是其它电源无法比拟的 电池板原料:玻璃,eva,电池片、铝合金壳、包锡铜片、不锈钢支架、蓄电池等 太阳能热水器把太阳光能转化为热能,将水从低温度加热到高温度,以满足人们在生活、生产中的热水使用。太阳能热水器是由集热管、储水箱及相关附件组成,把太阳能转换成热能主要依靠集热管。集热器受阳光照射面温度高,集热管背阳面温度低,而管内水便产生温差反应,利用热水上浮冷水下沉的原理,使水产生微循环而达到所需热水。 太阳能电池板和太阳能热水器工作原理相差较远,唯一相同的是都吸收太阳能 简单的材料太阳能热水器工作原理 :真空管集热器是在玻璃壁与吸热体之间抽成一定的真空度,以抑制空气的对流和传导热损。吸热体表面镀上一种特殊的涂层代替黑色的吸热板,还可抑制吸热体的辐射热损。因此,真空管集热器具有比普通平板型集热器更优良的热性能。在高温和低温环境下均有较高的集热效率。真空管集热器按其材料结构可分为全玻璃型和金属吸热体型两大类。其中全玻璃真空太阳能集热管具有透过率和吸收率高、热反射率低、对流热损小以及全年使用时间长等优良特性,同时制造工艺简便,技术成熟可靠,成本较低,全玻璃真空管热水器的使用日益广泛。
太阳能电池发电原理: 太阳电池是一种对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅, 非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,现已晶体硅为例描述光发电过程。 P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的的实质是:光子能量转换成电能的过程。 晶体硅太阳电池的制作过程: "硅"是我们这个星球上储藏最丰富的材料之一。自从上个世纪科学家们发现了晶体硅的半导体特性后,它几乎改变了一切,甚至人类的思维,20世纪末,我们的生活中处处可见"硅"的身影和作用,晶体硅太阳电池是近15年来形成产业化最快的。生产过程大致可分为五个步骤:a)提纯过程 b)拉棒过程 c)切片过程 d)制电池过程 e)封装过程. 太阳电池的应用: 上世纪60年代,科学家们就已经将太阳电池应用于空间技术-----通信卫星供电,上世纪末,在人类不断自我反省的过程中,对于光伏发电这种如此清洁和直接的能源形式已愈加亲切,不仅在空间应用,在众多领域中也大显身手。如:太阳能庭院灯,太阳能发电户用系统,村寨供电的独立系统,光伏水泵(饮水或灌溉),通信电源,石油输油管道阴极保护,光缆通信泵站电源,海水淡化系统,城镇中路标、高速公路路标等。在世纪之交前后期间,欧美等先进国家光伏发电并入城市用电系统及边远地区自然村落供电系统纳入发展方向。太阳电池与建筑系统的结合已经形成产业化趋势。 太阳电池基本性质: a) 光电转换效率η%:评估太阳电池好坏的重要因素。 目前:实验室η≈24%,产业化:η≈15%。 b)单体电池电压V:0.4V---0.6V 由材料物理特性决定。 c)填充因子FF%:评估太阳电池负载能力的重要因素。其中:Isc--短路电流, Voc--开路电压, Im--最佳工作电流, Vm--最佳工作电压; d)标准光强与环境温度 地面:AM1.5光谱,1000W/m2,t=25℃; e)温度对电池性质的影响 。 例如:在标准状况下,AM1.5光强, t=25℃ 某电池板输出功率测得为100Wp,如果电池温度升高至45℃时,则电池板输出功率就不到100Wp. 太阳能"光—电转换": 一束光照在半导体上和照在金属或绝缘体上效果截然不同。由于金属中自由电子如此之多,以致光引起的导电性能的变化完全可忽略。绝缘体在很高温度下仍未能激发出更多的电子参加导电。而导电性能介于金属和绝缘体之间的半导体对体内电子的束缚力远小于绝缘体,可见光的光子能量就可以把它从束缚激发到自由导电状态,这就是半导体的光电效应。当半导体内局部区域存在电场时,光生载流子将会积累,和没有电场时有很大区别,电场的两侧由于电荷积累将产生光电电压,这就是光生伏特效应,简称光伏效应。太阳电池就是利用这种效应制成的。 当太阳光照射到半导体上时,其中一部分被表面反射掉,其余部分被半导体吸收或透过。被吸收的光,当然有一些变成热,另一些光子则同组成半导体的原子价电子碰撞,于是产生电子—空穴对。这样,光能就以产生电子—空穴对的形式转变为电能、如果半导体内存在P—n结,则在P型和n型交界面两边形成势垒电场,能将电子驱向n区,空穴驱向P区,从而使得n区有过剩的电子,P区有过剩的空穴,在P—n结附近形成与势垒电场方向相反光的生电场。光生电场的一部分除抵销势垒电场外,还使P型层带正电,n型层带负电,在n区与p区之间的薄层产生所谓光生伏打电动势。若分别在P型层和n型层焊上金属引线,接通负载,则外电路便有电流通过。如此形成的一个个电池元件,把它们串联、并联起来,就能产生一定的电压和电流,输出功率。 制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多。目前,技术最成熟,并具有商业价值的太阳电池要算硅太阳电池。所以,将入射太阳光能转换成电能的半导体器件称为太阳能电池。它一般由两种不同导电类型的同质或异质半导体构成。目前,在空间或地面获得应用的只有硅电池,研究得比较成熟的还有砷化镓电池、硫化镉电池。硅太阳能电池是1954年由美国皮尔逊等人首次制成,1958年首次应用在“先锋1号”卫星上。1958年,我国亦开始研究太阳能电池,在1971年3月发射的科学实验卫星上首次应用,随着硅电池制造成本的逐年降低和技术的日益成熟,太阳能电池必将获得更广泛的应用。

7,太阳能电池的工作原理

原理:太阳光照在半导体p-n结上,形成新的空穴-电子对,在p-n结内建电场的作用下,光生空穴流向p区,光生电子流向n区,接通电路后就产生电流。这就是光电效应太阳能电池的工作原理。太阳能发电有两种方式,一种是光—热—电转换方式,另一种是光—电直接转换方式。光—热—电转换:光—热—电转换方式通过利用太阳辐射产生的热能发电,一般是由太阳能集热器将所吸收的热能转换成工质的蒸气,再驱动汽轮机发电。前一个过程是光—热转换过程;后一个过程是热—电转换过程,与普通的火力发电一样。太阳能热发电的缺点是效率很低而成本很高,估计它的投资至少要比普通火电站贵5~10倍。一座1000MW的太阳能热电站需要投资20~25亿美元,平均1kW的投资为2000~2500美元。因此,只能小规模地应用于特殊的场合,而大规模利用在经济上很不合算,还不能与普通的火电站或核电站相竞争。光—电直接转换:太阳能电池发电是根据特定材料的光电性质制成的。黑体(如太阳)辐射出不同波长(对应于不同频率)的电磁波, 如红外线、紫外线、可见光等等。当这些射线照射在不同导体或半导体上,光子与导体或半导体中的自由电子作用产生电流。射线的波长越短,频率越高,所具有的能量就越高,例如紫外线所具有的能量要远远高于红外线。但是并非所有波长的射线的能量都能转化为电能,值得注意的是光电效应于射线的强度大小无关,只有频率达到或超越可产生光电效应的阈值时,电流才能产生。能够使半导体产生光电效应的光的最大波长同该半导体的禁带宽度相关,譬如晶体硅的禁带宽度在室温下约为1.155eV,因此必须波长小于1100nm的光线才可以使晶体硅产生光电效应。太阳电池发电是一种可再生的环保发电方式,发电过程中不会产生二氧化碳等温室气体,不会对环境造成污染。按照制作材料分为硅基半导体电池、CdTe薄膜电池、CIGS薄膜电池、染料敏化薄膜电池、有机材料电池等。其中硅电池又分为单晶电池、多晶电池和无定形硅薄膜电池等。对于太阳电池来说最重要的参数是转换效率,在实验室所研发的硅基太阳能电池中,单晶硅电池效率为25.0%,多晶硅电池效率为20.4%,CIGS薄膜电池效率达19.6%,CdTe薄膜电池效率达16.7%,非晶硅(无定形硅)薄膜电池的效率为10.1%太阳电池是一种可以将能量转换的光电元件,其基本构造是运用P型与N型半导体接合而成的。半导体最基本的材料是“硅”,它是不导电的,但如果在半导体中掺入不同的杂质,就可以做成P型与N型半导体,再利用P型半导体有个空穴(P型半导体少了一个带负电荷的电子,可视为多了一个正电荷)。与N型半导体多了一个自由电子的电位差来产生电流,所以当太阳光照射时,光能将硅原子中的电子激发出来,而产生电子和空穴的对流,这些电子和空穴均会受到内建电位的影响,分别被N型及P型半导体吸引,而聚集在两端。此时外部如果用电极连接起来,形成一个回路,这就是太阳电池发电的原理。简单的说,太阳光电的发电原理,是利用太阳电池吸收0.4μm~1.1μm波长(针对硅晶)的太阳光,将光能直接转变成电能输出的一种发电方式。扩展资料:太阳能电池的基本特性有太阳能电池的极性、太阳电池的性能参数、太阳能电环保电池的伏安特性三个基本特性。具体解释如下1、太阳能电池的极性硅太阳能电池的一般制成P+/N型结构或N+/P型结构,P+和N+,表示太阳能电池正面光照层半导体材料的导电类型;N和P,表示太阳能电池背面衬底半导体材料的导电类型。太阳能电池的电性能与制造电池所用半导体材料的特性有关。2、太阳电池的性能参数太阳电池的性能参数由开路电压、短路电流、最大输出功率、填充因子、转换效率等组成。这些参数是衡量太阳能电池性能好坏的标志。3 太阳能电池的伏安特性P-N结太阳能电池包含一个形成于表面的浅P-N结、一个条状及指状的正面欧姆接触、一个涵盖整个背部表面的背面欧姆接触以及一层在正面的抗反射层。当电池暴露于太阳光谱时,能量小于禁带宽度Eg的光子对电池输出并无贡献。能量大于禁带宽度Eg的光子才会对电池输出贡献能量Eg,小于Eg的能量则会以热的形式消耗掉。因此,在太阳能电池的设计和制造过程中,必须考虑这部分热量对电池稳定性、寿命等的影响。参考资料:百度百科-----太阳能电池
太阳能电池的工作原理:太阳能电池是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的发电原理基本相同,以晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成P-N结。 当光线照射太阳能电池表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下,将会有电流流过外部电路产生一定的输出功率。这个过程的实质是:光子能量转换成电能的过程太阳电池能量转换的基础是结的光生伏特效应。当光照射到pn结上时,产生电子一空穴对,在半导体内部结附近生成的载流子没有被复合而到达空间电荷区,受内建电场的吸引,电子流入n区,空穴流入p区,结果使n区储存了过剩的电子,p区有过剩的空穴。它们在pn结附近形成与势垒方向相反的光生电场。光生电场除了部分抵消势垒电场的作用外,还使p区带正电,N区带负电,在N区和P区之间的薄层就产生电动势,这就是光生伏特效应。此时,如果将外电路短路,则外电路中就有与入射光能量成正比的光电流流过,这个电流称作短路电流,另一方面,若将PN结两端开路,则由于电子和空穴分别流入N区和P区,使N区的费米能级比P区的费米能级高,在这两个费米能级之间就产生了电位差。可以测得这个值,并称为开路电压。由于此时结处于正向偏置,因此,上述短路光电流和二极管的正向电流相等,并由此可以决定电位差的值。
光照射时电子发生定向移动,在两端产生电位差。载流子与截流子的相互运动产生。
太阳能电池工作原理电池的构造 以前,从电的角度来看,我们所用的硅都是中性的。多余的电子被磷中多余的质子所中和。缺失电子(空穴)由硼中缺失质子所中和。当空穴和电子在N型硅和P型硅的交界处混合时,中性就被破坏了。所有自由电子会填充所有空穴吗?不会。如果是这样,那么整个准备工作就没有什么意义了。不过,在交界处,它们确实会混合形成一道屏障,使得N侧的电子越来越难以抵达P侧。最终会达到平衡状态,这样我们就有了一个将两侧分开的电场。光伏电池中的电场效应 这个电场相当于一个二极管,允许(甚至推动)电子从P侧流向N侧,而不是相反。它就像一座山——电子可以轻松地滑下山头(到达N侧),却不能向上攀升(到达P侧)。 这样,我们就得到了一个作用相当于二极管的电场,其中的电子只能向一个方向运动。让我们来看一下在太阳光照射电池时会发生什么。 当光以光子的形式撞击太阳能电池时,其能量会使电子空穴对释放出来。 每个携带足够能量的光子通常会正好释放一个电子,从而产生一个自由的空穴。如果这发生在离电场足够近的位置,或者自由电子和自由空穴正好在它的影响范围之内,则电场会将电子送到N侧,将空穴送到P侧。这会导致电中性进一步被破坏,如果我们提供一个外部电流通路,则电子会经过该通路,流向它们的原始侧(P侧),在那里与电场发送的空穴合并,并在流动的过程中做功。电子流动提供电流,电池的电场产生电压。有了电流和电压,我们就有了功率,它是二者的乘积。 光伏电池的工作原理 我们的光伏电池可以吸收多少太阳光的能量?遗憾的是,此处介绍的简易电池对太阳光能量的吸收率至多为25%左右,通常的吸收率是15%或更低。为什么吸收率会这么低? 可见光只是电磁频谱的一部分。电磁辐射不是单频的——它由一系列不同波长(进而产生的一系列能级)组成。(有关电磁频谱的详细介绍,请参阅狭义相对论基本原理。) 光可分为不同波长,我们可以通过彩虹看出这一点。由于射到电池的光的光子能量范围很广,因此有些光子没有足够的能量来形成电子空穴对。它们只是穿过电池,就像电池是透明的一样。但其他一些光子的能量却很强。只有达到一定的能量 -- 单位为电子伏特(eV),由电池材料(对于晶体硅,约为1.1eV)决定——才能使电子逸出。我们将这个能量值称为材料的带隙能量。如果光子的能量比所需的能量多,则多余的能量会损失掉(除非光子的能量是所需能量的两倍,并且可以创建多组电子空穴对,但这种效应并不重要)。仅这两种效应就会造成电池中70%左右的辐射能损失。 为何我们不选择一种带隙很低的材料,以便利用更多的光子?遗憾的是,带隙还决定了电场强度(电压),如果带隙过低,那么在增大电流(通过吸收更多电子)的同时,也会损失一定的电压。请记住,功率是电压和电流的乘积。最优带隙能量必须能平衡这两种效应,对于由单一材料制成的电池,这个值约为1.4电子伏特。 我们还有其他能量损失。电子必须通过外部电路从电池的一侧流到另一侧。我们可以在电池底部镀上一层金属,以保证良好的导电性。但如果我们将电池顶部完全镀上金属,光子将无法穿过不透光导体,这样就会丧失所有电流(在某些电池中,只有上表面而非所有位置使用了透明导体)。如果我们只在电池的两侧设置触点,则电子需要经过很长一段距离(对于电子而言)才能抵达接触点。要知道,硅是半导体,它传输电流的性能没有金属那么好。它的内部电阻(称为串联电阻)相当高,而高电阻意味着高损耗。为了最大限度地降低这些损耗,电池上覆有金属接触网,它可缩短电子移动的距离,同时只覆盖电池表面的一小部分。即使是这样,有些光子也会被网格阻止,网格不能太小,否则它自身的电阻就会过高。 在实际使用电池之前,还要执行其他几个步骤。硅是一种有光泽的材料,这意味着它的反射性能很好。被反射的光子不能被电池利用。出于这个原因,在电池顶部采用抗反射涂层,可将反射损失降低到5%以下。 最后一步是安装玻璃盖板,用来将电池与元件分开,以保护电池。光伏模块由多块电池(通常是36块)串联和并联而成,以提供可用的电压和电流等级,这些电池放在一个坚固的框架中,后部分别引出正极端子和负极端子,并用玻璃盖板封上。 普通硅光伏电池的基本结构 单晶硅并非光伏电池中使用的唯一材料。电池材料中还采用了多晶硅,尽管这样生产出来的电池不如单晶硅电池的效率高,但可以降低成本。此外,还采用了没有晶体结构的非晶硅,这样做同样是为了降低成本。使用的其他材料还包括砷化镓、硒化铟铜和碲化镉。由于不同材料的带隙不同,因此它们似乎针对不同的波长或不同能量的光子进行了“调谐”。一种提高效率的方法是使用两层或者多层具有不同带隙的不同材料。带隙较高的材料放在表面,吸收较高能量的光子;而带隙较低的材料放在下方,吸收较低能量的光子。这项技术可大大提高效率。这样的电池称为多接面电池,它们可以有多个电场。

文章TAG:太阳能的原理太阳  太阳能  原理  
下一篇