1,三极管有什么特性

根据三极管的工作原理, 三极管主要有伏安特性(输出特性),输入特性 根据在电路中的功能分有,开关特性, 放大特性.
晶体三极管有三个极:发射极e,基极b,集电极c。接入电路后,正常工作的三极管是电流控制的电流源。流过集电极的电流是流过基极的电流的n倍。这样,基极电流改变一点点,集电极电流就改变很多。起到电流放大的作用。
放大特性啊。三极管是电流控制电流器件,集电极电流Ic等于B倍基极电流Ib,即关系式:Ic=BIb。

三极管有什么特性

2,三极管有哪些特性

(1)输出特性 其输出特性与一般晶体三极管特性相同,差别仅在于参变量不同:三极管的参变量为基极电流,而光电三极管的参变量是入射的光照度。 (2)简易测试方法 光电三极管可用万用表测量其电阻或电流。 (3)应用电路 由于光电三极管本身具有放大作用,因此只要一级三极管放大,即可驱动继电器。 (4)光电二极管与光电三极管的差别与选用 光电二极管的光电流小,输出特性线性度好,响应时间快;而光电三极管光电流大,输出 特性线性度差,响应时间慢。一般要求灵敏度高,工作频率低的开关电路,可选用光电三极 管;要求光电流与照度成线性关系或要求工作频率高时,则采用光电二极管。 (5)使用注意事项 不论是红外发射管还是接收管,要在制作前按介绍的方法测试一下,正确判断其好坏及分清是光电二极管还是光电三极管,这点十分重要。它们的负载电阻有较大的差别,一般光电三极管的负载电阻为光电二极管负载电阻的1/10。 光电二极管或光电三极管并非只对红外线敏感,所以在制作时要防止环境光(日光、灯光)过强而使放大电路输出饱和而失控,可加红色有机玻璃滤光,以减少环境光的影响。

三极管有哪些特性

3,三极管的主要特性是什么放大的实质是什么

三极管具有电流放大的特性。其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。三极管,全称应为半导体三极管,也称双极型晶体管、晶体三极管,是一种控制电流的半导体器件其作用是把微弱信号放大成幅度值较大的电信号, 也用作无触点开关。晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把整块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种。基本放大电路是放大电路中最基本的结构,是构成复杂放大电路的基本单元。它利用双极型半导体三极管输入电流控制输出电流的特性,或场效应半导体三极管输入电压控制输出电流的特性,实现信号的放大。基本放大电路一般是指由一个三极管或场效应管组成的放大电路。从电路的角度来看,可以将基本放大电路看成一个双端口网络。放大的作用体现在如下方面:1.放大电路主要利用三极管或场效应管的控制作用放大微弱信号,输出信号在电压或电流的幅度上得到了放大,输出信号的能量得到了加强。2.输出信号的能量实际上是由直流电源提供的,只是经过三极管的控制,使之转换成信号能量,提供给负载。

三极管的主要特性是什么放大的实质是什么

4,三极管有什么特性其主要功能是什么

三极管有三个极:发射极e,基极b,集电极c。接入电路后,正常工作的三极管是电流控制的电流源。流过集电极的电流是流过基极的电流的很多倍。这样,基极电流改变一点点,集电极电流就改变很多。起到电流放大的作用。 这个特性用来放大信号,将微小的信号变化放大。
三极管的工作原理 三极管是一种控制元件,主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。但是集电极电流的变化比基极电流的变化大得多,这就是三极管的放大作用。IC 的变化量与IB变化量之比叫做三极管的放大倍数β(β=ΔIC/ΔIB, Δ表示变化量。),三极管的放大倍数β一般在几十到几百倍。 三极管在放大信号时,首先要进入导通状态,即要先建立合适的静态工作点,也叫 建立偏置 ,否则会放大失真。 在三极管的集电极与电源之间接一个电阻,可将电流放大转换成电压放大:当基极电压UB升高时,IB变大,IC也变大,IC 在集电极电阻RC的压降也越大,所以三极管集电极电压UC会降低,且UB越高,UC就越低,ΔUC=ΔUB。仅供参考,请参考有关书籍。
三极管分两类,一类为npn,一类为pnp,其实就是两个二极管联起来的, npn的三极管用途一般都是用来放大电压,而pnp的是放在信号源。学术语言的话,你最好是百度一下,我为你讲的就只是这么多了。
去干别的吧

5,三极管的作用性能

半导体三极管也称双极型晶体管,晶体三极管,简称三极管,是一种电流控制电流的半导体器件.作用:把微弱信号放大成辐值较大的电信号,也用作无触点开关.晶体三极管(以下简称三极管)按材料分有两种:锗管和硅管。而每一种又有NPN和PNP两种结构形式,但使用最多的是硅NPN和PNP两种三极管,两者除了电源极性不同外,其工作原理都是相同的,下面仅介绍NPN硅管的电流放大原理。对于NPN管,它是由2块N型半导体中间夹着一块P型半导体所组成,发射区与基区之间形成的PN结称为发射结,而集电区与基区形成的PN结称为集电结,三条引线分别称为发射极e、基极b和集电极c。当b点电位高于e点电位零点几伏时,发射结处于正偏状态,而C点电位高于b点电位几伏时,集电结处于反偏状态,集电极电源Ec要高于基极电源Ebo。在制造三极管时,有意识地使发射区的多数载流子浓度大于基区的,同时基区做得很薄,而且,要严格控制杂质含量,这样,一旦接通电源后,由于发射结正确,发射区的多数载流子(电子)极基区的多数载流子(空穴)很容易地越过发射结互相向对方扩散,但因前者的浓度基大于后者,所以通过发射结的电流基本上是电子流,这股电子流称为发射极电流Ie。由于基区很薄,加上集电结的反偏,注入基区的电子大部分越过集电结进入集电区而形成集电集电流Ic,只剩下很少(1-10%)的电子在基区的空穴进行复合,被复合掉的基区空穴由基极电源Eb重新补给,从而形成了基极电流Ibo.根据电流连续性原理得:Ie=Ib+Ic这就是说,在基极补充一个很小的Ib,就可以在集电极上得到一个较大的Ic,这就是所谓电流放大作用,Ic与Ib是维持一定的比例关系,即:β1=Ic/Ib式中:β--称为直流放大倍数,集电极电流的变化量△Ic与基极电流的变化量△Ib之比为:β=△Ic/△Ib式中β--称为交流电流放大倍数,由于低频时β1和β的数值相差不大,所以有时为了方便起见,对两者不作严格区分,β值约为几十至一百多。三极管是一种电流放大器件,但在实际使用中常常利用三极管的电流放大作用,通过电阻转变为电压放大作用。详细见参考资料

6,晶体三极管的特性

晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。 晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。 一、晶体管的种类 晶体管有多种分类方法。 (一)按半导体材料和极性分类 按晶体管使用的半导体材料可分为硅材料晶体管和锗材料晶体管管。按晶体管的极性可分为锗NPN型晶体管、锗PNP晶体管、硅NPN型晶体管和硅PNP型晶体管。 (二)按结构及制造工艺分类 晶体管按其结构及制造工艺可分为扩散型晶体管、合金型晶体管和平面型晶体管。 (三)按电流容量分类 晶体管按电流容量可分为小功率晶体管、中功率晶体管和大功率晶体管。 (四)按工作频率分类 晶体管按工作频率可分为低频晶体管、高频晶体管和超高频晶体管等。 (五)按封装结构分类 晶体管按封装结构可分为金属封装(简称金封)晶体管、塑料封装(简称塑封)晶体管、玻璃壳封装(简称玻封)晶体管、表面封装(片状)晶体管和陶瓷封装晶体管等。其封装外形多种多样。 (六)按功能和用途分类 晶体管按功能和用途可分为低噪声放大晶体管、中高频放大晶体管、低频放大晶体管、开关晶体管、达林顿晶体管、高反压晶体管、带阻晶体管、带阻尼晶体管、微波晶体管、光敏晶体管和磁敏晶体管等多种类型。 二、晶体管的主要参数 晶体管的主要参数有电流放大系数、耗散功率、频率特性、集电极最大电流、最大反向电压、反向电流等。 (一)电流放大系数 电流放大系数也称电流放大倍数,用来表示晶体管放大能力。 根据晶体管工作状态的不同,电流放大系数又分为直流电流放大系数和交流电流放大系数。 1.直流电流放大系数 直流电流放大系数也称静态电流放大系数或直流放大倍数,是指在静态无变化信号输入时,晶体管集电极电流IC与基极电流IB的比值,一般用hFE或β表示。 2.交流电流放大系数 交流电流放大系数也称动态电流放大系数或交流放大倍数,是指在交流状态下,晶体管集电极电流变化量△IC与基极电流变化量△IB的比值,一般用hfe或β表示。 hFE或β既有区别又关系密切,两个参数值在低频时较接近,在高频时有一些差异。 (二)耗散功率 耗散功率也称集电极最大允许耗散功率PCM,是指晶体管参数变化不超过规定允许值时的最大集电极耗散功率。 耗散功率与晶体管的最高允许结温和集电极最大电流有密切关系。晶体管在使用时,其实际功耗不允许超过PCM值,否则会造成晶体管因过载而损坏。 通常将耗散功率PCM小于1W的晶体管称为小功率晶体管,PCM等于或大于1W、小于5W的晶体管被称为中功率晶体管,将PCM等于或大于5W的晶体管称为大功率晶体管。 (三)频率特性 晶体管的电流放大系数与工作频率有关。若晶体管超过了其工作频率范围,则会出现放大能力减弱甚至失去放大作用。 晶体管的频率特性参数主要包括特征频率fT和最高振荡频率fM等。 1.特征频率fT 晶体管的工作频率超过截止频率fβ或fα时,其电流放大系数β值将随着频率的升高而下降。特征频率是指β值降为1时晶体管的工作频率。 通常将特征频率fT小于或等于3MHZ的晶体管称为低频管,将fT大于或等于30MHZ的晶体管称为高频管,将fT大于3MHZ、小于30MHZ的晶体管称为中频管。 2.最高振荡频率fM 最高振荡频率是指晶体管的功率增益降为1时所对应的频率。 通常,高频晶体管的最高振荡频率低于共基极截止频率fα,而特征频率fT则高于共基极截止频率fα、低于共集电极截止频率fβ。 (四)集电极最大电流ICM 集电极最大电流是指晶体管集电极所允许通过的最大电流。当晶体管的集电极电流IC超过ICM时,晶体管的β值等参数将发生明显变化,影响其正常工作,甚至还会损坏。 (五)最大反向电压 最大反向电压是指晶体管在工作时所允许施加的最高工作电压。它包括集电极—发射极反向击穿电压、集电极—基极反向击穿电压和发射极—基极反向击穿电压。 1.集电极—发射极反向击穿电压 该电压是指当晶体管基极开路时,其集电极与发射极之间的最大允许反向电压,一般用VCEO或BVCEO表示。 2.集电极—基极反向击穿电压 该电压是指当晶体管发射极开路时,其集电极与基极之间的最大允许反向电压,用VCBO或BVCBO表示。 3.发射极—基极反向击穿电压 该电压是指当晶体管的集电极开路时,其发射极与基极与之间的最大允许反向电压,用VEBO或BVEBO表示。 (六)反向电流 晶体管的反向电流包括其集电极—基极之间的反向电流ICBO和集电极—发射极之间的反向击穿电流ICEO。 1.集电极—基极之间的反向电流ICBO ICBO也称集电结反向漏电电流,是指当晶体管的发射极开路时,集电极与基极之间的反向电流。ICBO对温度较敏感,该值越小,说明晶体管的温度特性越好。 2.集电极—发射极之间的反向击穿电流ICEO ICEO是指当晶体管的基极开路时,其集电极与发射极之间的反向漏电电流,也称穿透电流。此电流值越小,说明晶体管的性能越好。 晶体管是半导体三极管中应用最广泛的器件之一,在电路中用“V”或“VT”(旧文字符号为“Q”、“GB”等)表示。晶体管是内部含有两个PN结,外部通常为三个引出电极的半导体器件。它对电信号有放大和开关等作用,应用十分广泛。 三极管详解半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。它最主要的功能是电流放大和开关作用。三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。

文章TAG:三极管的特性  三极管有什么特性  
下一篇