1,什么是热电效应

所谓的热电效应,是当受热物体中的电子(空穴),因随着温度梯度由高温区往低温区移动时,所产生电流或电荷堆积的一种现象。而这个效应的大小,则是用称为thermopower(Q)的参数来测量,其定义为Q=E/-dT(E为因电荷堆积产生的电场,dT则是温度梯度)。
热电效应是一个由温差产生电压的直接转换,且反之亦然。简单的放置一个热电装置,当他们的两端有温差时会产生一个电压,而当一个电压施加于其上,他也会产生一个温差。这个效应可以用来产生电能、测量温度,冷却或加热物体。

什么是热电效应

2,什么是压电效应和热电效应

压电效应:某些电介质在沿一定方向上受到外力的作用而变形时,其内部会产生极化现象,同时在它的两个相对表面上出现正负相反的电荷。当外力去掉后,它又会恢复到不带电的状态,这种现象称为正压电效应。当作用力的方向改变时,电荷的极性也随之改变。相反,当在电介质的极化方向上施加电场,这些电介质也会发生变形,电场去掉后,电介质的变形随之消失,这种现象称为逆压电效应。依据电介质压电效应研制的一类传感器称为压电传感器。热电效应:温差通过热电偶直接转换成电压,反之亦然。当两侧温度不同时,热电装置会产生电压。相反,当一个电压施加在它上面时,热量从一侧传递到另一侧,产生温差。在原子尺度上,施加的温度梯度导致材料中的电荷载流子从热侧扩散到冷侧。这种效应可以用来发电、测量温度或改变物体的温度。因为加热和冷却的方向所施加电压的极性决定,所以热电装置可以用作温度控制器。扩展资料:压电式传感器是由压电元件组成的自发电式传感器。压电元件受到一定方向的外力而产生变形,内部产生了电荷极化的现象,在元件的上下两表面便产生极性相反、大小相等的电荷,且电荷量和所受到压力的大小成正比。热电式传感器是将温度变化转换为电量变化的装置。它是利用某些材料或元件的性能随温度变化的特性来进行测量的。例如将温度变化转换为电阻、热电动势、热膨胀、导磁率等的变化,再通过适当的测量电路达到检测温度的目的。把温度变化转换为电势的热电式传感器称为热电偶;把温度变化转换为电阻值的热电式传感器称为热电阻。参考资料来源:百度百科-热电效应参考资料来源:百度百科-压电效应

什么是压电效应和热电效应

3,热电偶工作原理

热电偶是一种感温元件,是一种仪表。它直接测量温度,并把温度信号转 热电偶换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。 热电偶测温基本原理:将两种不同材料的导体或半导体a和b焊接起来,构成一个闭合回路。当导体a和b的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。
热电效应。两种不同的导体A与B串接成一闭合回路,就有两个结合点,点1和点2.如果两结合点出现温差,回路中就有电流产生。这种由于温度不同而产生的电动势的现象称为热电效应。

热电偶工作原理

4,谁能解释一下电的热效应原理以及热电效应原理

电流通过导体时,会因为导体电阻而损耗掉部分能量,这部分能量转换为热能,就形成了电的热效应. 电制冷的理论基础是固体的热电效应,在无外磁场存在时,它包括五个效应,导热、焦耳热损失、西伯克(Seebeck)效应、帕尔帖(Peltire)效应和汤姆逊(Thomson)效应. 1.西伯克(seebeck)效应 有两种不同导体组成的开路中,如果导体的两个结点存在温度差,这开路中将产生电动势E.这就是西伯克效应.由于西伯克效应而产生的电动势称作温差电动势. 材料的西伯克效应的大小,用温差电动势率表示.材料相对于某参考材料的温差电动势率为 (1) 由两种不同材料P、N所组成的电偶,它们的温差电动势率 等于 与 之差,即 (2) 热电制冷中用P型半导体和N型半导体组成电偶.两材料对应的 和 ,一个为负,一个为正.取其绝对值相加,并将 直接简化记作,有 (3) 2.帕尔帖(peltire)效应 电流流过两种不同导体的界面时,将从外界吸收热量,或向外界放出热量.这就是帕尔帖效应.由帕尔帖效应产生的热流量称作帕尔帖热,用符号 表示. 对帕尔帖效应的物理解释是:电荷载体在导体中运动形成电流.由于电荷载体在不同的材料中处于不同的能级,当它从高能级向低能级运动时,便释放出多余的能量;相反,从低能级向高能级运动时,从外界吸收能量.能量在两材料的交界面处以热的形式吸收或放出. 材料的帕尔贴效应强弱用它相对于某参考材料的帕尔贴系数 表示 (4) 式中 I ----- 流经导体的电流,A. 类似的,对于P型半导体和N型半导体组成的电偶,其帕尔贴系数 (或简单记作 )有 (5) 帕尔贴效应与西伯克效应都是温差电效应,二者有密切联系.事实上,它们互为反效应,一个是说电偶中有温差存在时会产生电动势;一个是说电偶中有电流通过时会产生温差.温差电动势率与帕尔贴系数 之间存在下述关系 (6) 式中 T ----- 结点处的温度,K. 3.汤姆逊效应 电流通过具有温度梯度的均匀导体时,导体将吸收或放出热量.这就是汤姆逊效应.由汤姆逊效应产生的热流量,称汤姆逊热,用符号 表示 (7) 式中 ----- 汤姆逊系数,; ―― ----- 温度差,K; ――I ----- 电流,A. 在热电制冷分析中,通常忽略汤姆逊效应的影响.另外,需指出:以上热电效应在电流反向时是可逆的.由于固体系统存在有限温差和热流,所以热电制冷是不可逆热力学过程.

5,什么是热电子效应

热电子效应是由于在器件尺寸缩小的过程中,电源电压不可能和器件尺寸按同样比例缩小,这样导致MOS器件内部电场增强。当MOS器件沟道中的电场强度超过100kV/cm时,电子在两次散射间获得的能量将可能超过它在散射中失去的能量,从而使一部分电子的能量显著高于热平衡时的平均动能而成为热电子。高能量的热电子将严重影响MOS器件和电路的可靠性。热电子效应主要表现在以下三个方面:(1)、热电子向栅氧化层中发射;(2)、热电子效应引起衬底电流;(3)、热电子效应引起栅电流。以加强型NMOS为例,当发生热电子效应时,处于价带的平衡态电子有机会因被热电子撞击而跃迁至导带,而成为新的热电子,产生许多电子-空穴对,使载子数量上升,造成载子倍增现象。这些因载子倍增所产生的电子,部分因电场作用向漏极运动,增加漏极电流;部分高能量电子则能够射入栅氧化层,引起栅电流;而产生的空穴则部分向衬底运动,引起衬底电流,另一部分被源极所收集,使源极与井的耗尽层加宽,进一步缩短沟道长度,热电子数量增加,促使更多的载子倍增,甚至发生电击穿。
注极体效应,就是靠掺杂度源漏极电区便薄,当有电压加到源漏两端时,来抵消电场的。

6,热电偶工作原理

两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当两个接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题:1、热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数;2、热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关;3、当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流。热电偶就是利用这一效应来工作的。
热电偶是一种感温元件,是一种仪表。它直接测量温度,并把温度信号转 热电偶 换成热电动势信号, 通过电气仪表(二次仪表)转换成被测介质的温度。热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。 热电偶测温基本原理:将两种不同材料的导体或半导体a和b焊接起来,构成一个闭合回路。当导体a和b的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。

7,热电偶以及热电阻以及测温原件的工作原理

工作原理、 两种不同成份的导体(称为热电偶丝材或热电极)两端接合成回路,当接合点的温度不同时,在回路中就会产生电动势,这种现象称为热电效应,而这种电动势称为热电势。热电偶就是利用这种原理进行温度测量的,其中,直接用作测量介质温度的一端叫做工作端(也称为测量端),另一端叫做冷端(也称为补偿端);冷端与显示仪表或配套仪表连接,显示仪表会指出热电偶所产生的热电势。 热电偶实际上是一种能量转换器,它将热能转换为电能,用所产生的热电势测量温度,对于热电偶的热电势,应注意如下几个问题: 1:热电偶的热电势是热电偶工作端的两端温度函数的差,而不是热电偶冷端与工作端,两端温度差的函数; 2 :热电偶所产生的热电势的大小,当热电偶的材料是均匀时,与热电偶的长度和直径无关,只与热电偶材料的成份和两端的温差有关; 3:当热电偶的两个热电偶丝材料成份确定后,热电偶热电势的大小,只与热电偶的温度差有关;若热电偶冷端的温度保持一定,这进热电偶的热电势仅是工作端温度的单值函数。将两种不同材料的导体或半导体A和B焊接起来,构成一个闭合回路,如图所示。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。特性 、 ◆装配简单,更换方便 ◆压簧式感温元件,抗震性能好 ◆测量范围大 ◆ 机械强度高,耐压性能好工作范围常用工业热电偶的分度号主要有S、R、B、N、K、E、J、T等几种。其中S、R、B属于贵金属热电偶。 N、K、E、J、T属于廉金属热电偶。t、S分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1400℃ 短期1600℃。在所有热电偶中,S分度号的精确度等级最高,通常用作标准热电偶使用。 R分度号与S分度号相比除热电动势大15%左右,其它性能几乎完全相同; B分度号在室温下热电动势极小,故在测量时一般不用补偿导线。它的长期使用温度为1600℃, 短期1800℃。可在氧化性或中性气氛中使用,也可在真空条件下短期使用。 N分度号的特点是1300℃下高温抗氧化能力强,热电动势的长期稳定性及短期热循环的复现性好,耐核辐照及耐低温性能也好,可以部分代替S分度号热电偶; K分度号的特点是抗氧化性能强,宜在氧化性、惰性气氛中连续使用,长期使用温度1000℃,短期1200℃。在所有热电偶中使用最为广泛。 E分度号的特点是在常用热电偶中,其热电动势最大,即灵敏度最高。宜在氧化性、惰性气氛中连续使用,使用温度0-800℃;J分度号的特点是既可用于氧化性气氛(使用温度上限750℃),也可用于还原性气氛(使用温度上限950℃),并且耐H2及CO气体腐蚀,多用于炼油及化工; T分度号的特点是在所有廉金属热电偶中精确度等级最高,通常用来测量300℃以下的温度。、使用热电偶的行业有:钢铁,发电,石油、化工,玻纤,食品、玻璃、制药、陶瓷、有色金属、热处理、航天、粉末冶金、碳素、焦化、印染等几乎所有工业领域。 生产厂家、中国热电偶市场不大,每年约30亿左右的产值。用镍、铜、铂金、铑等贵金属生产的产品,还不如2元一盒的牛奶销售量大,而且,比较散乱,由于生产热电偶几乎没有什么技术和资金门槛,进入比较容易,安徽天长、江苏兴化、浙江乐清一带的个体、私营企业蓬勃发展,激烈的竞争导致了市场鱼龙混杂,实际应用使用热电偶的行业有:钢铁,发电,石油、化工,玻纤,食品、玻璃、制药、陶瓷、有色金属、热处理、航天、粉末冶金、碳素、焦化、印染等几乎所有工业领域。
热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-271--+2800℃如金铁镍铬和钨-铼。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。原理1、热电偶测温基本原理是将两种不同材料的导体或半导体焊接起来,构成一个闭合回路。由于两种不同金属所携带的电子数不同,当两个导体的二个执着点之间存在温差时,就会发生高电位向低电位放电现象,因而在回路中形成电流,温度差越大,电流越大,这种现象称为热电效应,也叫塞贝克效应。热电偶就是利用这一效应来工作的。2、热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ① 组成热电偶的两个热电极的焊接必须牢固; ② 两个热电极彼此之间应很好地绝缘,以防短路; ③ 补偿导线与热电偶自由端的连接要方便可靠; ④ 保护套管应能保证热电极与有害介质充分隔离。5安装尺寸应该尽量选用公制[中国标准]如螺纹:12X1.5,16X1.5,20X1.5,27X2,33X2mm.法兰直径95、105、115mm.
热电偶是工业上最常用的温度检测元件之一。其优点是:①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。②测量范围广。常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶最低可测到-271--+2800℃如金铁镍铬和钨-铼。③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。原理1、热电偶测温基本原理是将两种不同材料的导体或半导体焊接起来,构成一个闭合回路。由于两种不同金属所携带的电子数不同,当两个导体的二个执着点之间存在温差时,就会发生高电位向低电位放电现象,因而在回路中形成电流,温度差越大,电流越大,这种现象称为热电效应,也叫塞贝克效应。热电偶就是利用这一效应来工作的。2、热电偶的种类及结构形成(1)热电偶的种类常用热电偶可分为标准热电偶和非标准热电偶两大类。所谓标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。标准化热电偶 我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。(2)热电偶的结构形式 为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ① 组成热电偶的两个热电极的焊接必须牢固; ② 两个热电极彼此之间应很好地绝缘,以防短路; ③ 补偿导线与热电偶自由端的连接要方便可靠; ④ 保护套管应能保证热电极与有害介质充分隔离。5安装尺寸应该尽量选用公制[中国标准]如螺纹:12X1.5,16X1.5,20X1.5,27X2,33X2mm.法兰直径95、105、115mm.
1、热电阻是根据金属丝的电阻随温度变化的原理工作的,即:温度信号转换成电阻信号。2、热电偶是将两种不同材料的导线或半导体a和b焊接起来,构成一个闭合回路,当导线a和b两个接点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。即:温度信号转换成毫伏信号。

文章TAG:热电  热电效应  效应  原理  热电效应原理  
下一篇