液晶材料,液晶屏的材料都有哪些
来源:整理 编辑:五合装修 2023-05-08 17:51:05
本文目录一览
1,液晶屏的材料都有哪些
如果按照显示效果的好坏由高到低排列依次为ASV、TFT、OLED、TFD、UFB、STN、CSTN。
2,什么叫液晶材料液晶材料有哪些
液晶高分子分子复合材料(Molecular composite)是一种新型的高分子复合材料,其概念是由日本的Takayanagi和美国的 Helminiak等人差不多同时在20世纪80 年代初提出来的。它通常是指将纤维与树脂基体的宏观复合扩展到分子水平的微观复合,也就是用刚性高分子链或微纤作增强剂,并以接近分子水平的分散程度分散到柔性高分子基体中的复合材料。
3,液晶是什么材料做的
一些有机化合物和高分子聚合物,在一定温度或浓度的溶液中,既具有液体的流动性,又具有晶体的各向异性.大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。
4,液晶是什么材料做的
LCD技术是把液晶灌入两个列有细槽的平面之间。这两个平面上的槽互相垂直(相交成90度)。也就是说,若一个平面上的分子南北向排列,则另一平面上的分子东西向排列,而位于两个平面之间的分子被强迫进入一种90度扭转的状态。由于光线顺着分子的排列方向传播,所以光线经过液晶时也被扭转90度。但当液晶上加一个电压时,分子便会重新垂直排列,使光线能直射出去,而不发生任何扭转。 LCD是依赖极化滤光器(片)和光线本身。自然光线是朝四面八方随机发散的。极化滤光器实际是一系列越来越细的平行线。这些线形成一张网,阻断不与这些线平行的所有光线。极化滤光器的线正好与第一个垂直,所以能完全阻断那些已经极化的光线。只有两个滤光器的线完全平行,或者光线本身已扭转到与第二个极化滤光器相匹配,光线才得以穿透。 LCD正是由这样两个相互垂直的极化滤光器构成,所以在正常情况下应该阻断所有试图穿透的光线。但是,由于两个滤光器之间充满了扭曲液晶,所以在光线穿出第一个滤光器后,会被液晶分子扭转90度,最后从第二个滤光器中穿出。另一方面,若为液晶加一个电压,分子又会重新排列并完全平行,使光线不再扭转,所以正好被第二个滤光器挡住。总之,加电将光线阻断,不加电则使光线射出。 然而,可以改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。但由于计算机屏幕几乎总是亮着的,所以只有“加电将光线阻断”的方案才能达到最省电的目的。 从液晶显示器的结构来看,无论是笔记本电脑还是桌面系统,采用的LCD显示屏都是由不同部分组成的分层结构。LCD由两块玻璃板构成,厚约1mm,其间由包含有液晶(LC)材料的5μm均匀间隔隔开。因为液晶材料本身并不发光,所以在显示屏两边都设有作为光源的灯管,而在液晶显示屏背面有一块背光板(或称匀光板)和反光膜,背光板是由荧光物质组成的可以发射光线,其作用主要是提供均匀的背景光源。背光板发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。在玻璃板与液晶材料之间是透明的电极,电极分为行和列,在行与列的交叉点上,通过改变电压而改变液晶的旋光状态,液晶材料的作用类似于一个个小的光阀。在液晶材料周边是控制电路部分和驱动电路部分。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。一些有机化合物和高分子聚合物,在一定温度或浓度的溶液中,既具有液体的流动性,又具有晶体的各向异性.大多数液晶都属于有机复合物,由长棒状的分子构成。在自然状态下,这些棒状分子的长轴大致平行。将液晶倒入一个经精良加工的开槽平面,液晶分子会顺着槽排列,所以假如那些槽非常平行,则各分子也是完全平行的。
5,液晶显示器的液晶是用什么材料做的
液晶显示器是用一种有机化合物,常态下呈液态,但是它的分子排列却和固体晶体一样非常规则,因此取名液晶。 基本介绍: 液晶显示器,为平面超薄的显示设备,它由一定数量的彩色或黑白像素组成,放置于光源或者反射面前方。液晶显示器功耗很低,因此倍受工程师青睐,适用于使用电池的电子设备。它的主要原理是以电流刺激液晶分子产生点、线、面配合背部灯管构成画面。特殊性质在于,如果给液晶施加一个电场,会改变它的分子排列,这时如果给它配合偏振光片,它就具有阻止光线通过的作用(在不施加电场时,光线可以顺利透过),如果再配合彩色滤光片,改变加给液晶电压大小,就能改变某一颜色透光量的多少,也可以形象地说改变液晶两端的电压就能改变它的透光度(但实际中这必须和偏光板配合)。大多数液晶高分子是棒状分子。人们根据分子排列的不同把液晶分为胆甾相,近晶相,向列相等形态。低温下它是晶体结构,高温时则变为液体,在中间温度则以液晶形态存在。目前,各种形态的液晶材料基本上都用于开发液晶显示器(简称lcd),已经开发的有各种向列相液晶、铁电液晶和聚合物分散液晶显示器等,其中市场份额最大、发展最快的就是向列相液晶显示器。液晶是如何显示的呢?首先要介绍一下偏振片,它是一种特殊器件,它只允许偏振方向与它的偏振化方向平行的光透过。普通自然光是一种复合光,它在各方向都偏振,因此可以通过偏振片,透射光的偏振方向与偏振化方向平行。但是,如果让两个偏振片的偏振化方向相互垂直,则由于第一次出射光的偏振方向与第二个偏振片的偏振化方向垂直,因此光不能通过第二个偏振片。 如果把液晶放在两个偏振片之间,情况会发生变化。在向列相液晶中,棒状分子的排列是彼此平行的。在玻璃上涂一层特殊物质可以使靠近玻璃板的液晶分子朝某一方向排列,如果上下两玻璃板的定向是彼此垂直的,则液晶分子将采取逐渐过渡的方式被扭转成螺旋状。此时如果有光线从上端进入,通过第一个偏振片后,将被液晶分子逐渐改变偏振方向(从上至下旋转了90度),因为这种螺旋结构的液晶具有调制光线偏振方向的特性,光线最终可以从下端射出。图2中同时用纸片作为模型类比,这个原理就可以直观的表现出来。如果两玻璃板之间被加上电压,则分子排列方向将与电场方向平行,光线则不能通过第二个极板。当然,要能显示各种图像还需要先进的制造技术以及复杂的控制电路。至于彩色液晶显示器就更复杂了,在此不作介绍。 lcd具有很高的成像质量,而且它还具有工作电压低,功耗低,体积小等特点。随着lcd技术的迅速发展,人们对研发液晶材料的兴趣越来越大。世界市场对液晶显示器的需求也日益增大,现在已经有越来越多的液晶显示器、液晶电视进入普通家庭。目前液晶材料正在以每年3000-4000个新液晶化合物出现的速度向前发展,尤其是日本每年都有大量新液晶材料研制成功。我国液晶材料技术经过十多年的努力,已逐步形成了相当规模的产业。虽然发展较快,但仍与发达国家存在10年左右的差距。 液晶材料目前最主要的应用就是用来制造显示器。当然,任何材料的用途都是多方面的。因此液晶在其他领域的应用也日益受到人们的重视。比如:液晶高分子可以作为结构材料,用来制造高强度的防弹衣、舰船缆绳等;由于具有很小的膨胀系数,可以用于微波炉具,用作光纤的包覆层;在电子学方面,可以作液晶电子光快门、压力传感器、温度传感器、以及信息存储器件;在生命科学方面,有关生物液晶的研究已经取得了很多成果;在航空航天领域,可用于航天飞机、宇宙飞船,人造卫星等。可以预料,在不远的将来,液晶材料将会得到更大规模的应用。 参考资料: <a href="http://wenwen.soso.com/z/urlalertpage.e?sp=shttp%3a%2f%2fwww.sic.ac.cn%3a8000%2fkpz2005%2fshuzi%2f03.htm" target="_blank">http://www.sic.ac.cn:8000/kpz2005/shuzi/03.htm</a>
文章TAG:
液晶 液晶材料 材料 液晶屏 液晶材料